Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):333–340. doi: 10.1093/genetics/158.1.333

Genetic architecture of testis and seminal vesicle weights in mice.

I Le Roy 1, S Tordjman 1, D Migliore-Samour 1, H Degrelle 1, P L Roubertoux 1
PMCID: PMC1461652  PMID: 11333241

Abstract

Comparisons across 13 inbred strains of laboratory mice for reproductive organ (paired seminal vesicles and paired testes) weights indicated a very marked contrast between the C57BL/6By and NZB/BINJ mice. Subsequently these strains were selected to perform a quantitative genetic analysis and full genome scan for seminal vesicle and testis weights. An F(2) population was generated. The quantitative genetic analyses indicated that each was linked to several genes. Sixty-six short sequences for length polymorphism were used as markers in the wide genome scan strategy. For weight of paired testes, heritability was 82.3% of the total variance and five QTL contributed to 72.8% of the total variance. Three reached a highly significant threshold (>4.5) and were mapped on chromosome X (LOD score 9.11), chromosome 4 (LOD score 5.96), chromosome 10 (LOD score 5.81); two QTL were suggested: chromosome 13 (LOD score 3.10) and chromosome 18 (LOD score 2.80). Heritability for weight of seminal vesicles was 50.7%. One QTL was mapped on chromosome 4 (LOD score 9.21) and contributed to 24.2% of the total variance. The distance of this QTL to the centromere encompassed the distance of the QTL linked with testicular weight on chromosome 4, suggesting common genetic mechanisms as expected from correlations in the F(2). Both testis and seminal vesicle weights were associated with a reduction in the NZB/BINJ when this strain carried the Y(NPAR) from CBA/H whereas the Y(NPAR) from NZB/BINJ in the CBA/H strain did not modify reproductive organ weights, indicating that the Y(NPAR) interacts with the non-Y(NPAR) genes. The effects generated by this chromosomal region were significant but small in size.

Full Text

The Full Text of this article is available as a PDF (195.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argyropoulos G., Shire J. G. Genotypic effects on gonadal size in fetal mice. J Reprod Fertil. 1989 Jul;86(2):473–478. doi: 10.1530/jrf.0.0860473. [DOI] [PubMed] [Google Scholar]
  2. Asada Y., Varnum D. S., Frankel W. N., Nadeau J. H. A mutation in the Ter gene causing increased susceptibility to testicular teratomas maps to mouse chromosome 18. Nat Genet. 1994 Apr;6(4):363–368. doi: 10.1038/ng0494-363. [DOI] [PubMed] [Google Scholar]
  3. Barash I. A., Cheung C. C., Weigle D. S., Ren H., Kabigting E. B., Kuijper J. L., Clifton D. K., Steiner R. A. Leptin is a metabolic signal to the reproductive system. Endocrinology. 1996 Jul;137(7):3144–3147. doi: 10.1210/endo.137.7.8770941. [DOI] [PubMed] [Google Scholar]
  4. Carlier M., Roubertoux P. L., Kottler M. L., Degrelle H. Y chromosome and aggression in strains of laboratory mice. Behav Genet. 1990 Jan;20(1):137–156. doi: 10.1007/BF01070750. [DOI] [PubMed] [Google Scholar]
  5. Carlier M., Roubertoux P. L., Pastoret C. The Y chromosome effect on intermale aggression in mice depends on the maternal environment. Genetics. 1991 Sep;129(1):231–236. doi: 10.1093/genetics/129.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chubb C. Genes regulating testis size. Biol Reprod. 1992 Jul;47(1):29–36. doi: 10.1095/biolreprod47.1.29. [DOI] [PubMed] [Google Scholar]
  7. Darvasi A., Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet. 1997 Mar;27(2):125–132. doi: 10.1023/a:1025685324830. [DOI] [PubMed] [Google Scholar]
  8. Francois M. H., Nosten-Bertrand M., Roubertoux P. L., Kottler M. L., Degrelle H. Opponent strain effect on eliciting attacks in NZB mice: physiological correlates. Physiol Behav. 1990 Jun;47(6):1181–1185. doi: 10.1016/0031-9384(90)90370-j. [DOI] [PubMed] [Google Scholar]
  9. Gaspar M. L., Meo T., Bourgarel P., Guenet J. L., Tosi M. A single base deletion in the Tfm androgen receptor gene creates a short-lived messenger RNA that directs internal translation initiation. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8606–8610. doi: 10.1073/pnas.88.19.8606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jean-Faucher C., Berger M., de Turckheim M., Veyssière G., Jean C. Testicular response to HCG stimulation and sexual maturation in mice. Horm Res. 1983;17(4):216–221. doi: 10.1159/000179700. [DOI] [PubMed] [Google Scholar]
  11. Kerbusch S., van der Staay F. J., Hendriks N. A searching procedure for transformations and models in a classical Mendelian cross breeding study. Behav Genet. 1981 May;11(3):239–254. doi: 10.1007/BF01065461. [DOI] [PubMed] [Google Scholar]
  12. Le Roy I., Mortaud S., Tordjman S., Donsez-Darcel E., Carlier M., Degrelle H., Roubertoux P. L. Genetic correlation between steroid sulfatase concentration and initiation of attack behavior in mice. Behav Genet. 1999 Mar;29(2):131–136. doi: 10.1023/a:1021664607131. [DOI] [PubMed] [Google Scholar]
  13. Le Roy I., Roubertoux P. L., Jamot L., Maarouf F., Tordjman S., Mortaud S., Blanchard C., Martin B., Guillot P. V., Duquenne V. Neuronal and behavioral differences between Mus musculus domesticus (C57BL/6JBy) and Mus musculus castaneus (CAST/Ei). Behav Brain Res. 1998 Sep;95(1):135–142. doi: 10.1016/s0166-4328(97)00218-0. [DOI] [PubMed] [Google Scholar]
  14. Lee H., Gong C. L., Wu S., Iyengar M. R. Accumulation of phosphocreatine and creatine in the cells and fluid of mouse seminal vesicles is regulated by testosterone. Biol Reprod. 1991 Mar;44(3):540–545. doi: 10.1095/biolreprod44.3.540. [DOI] [PubMed] [Google Scholar]
  15. Mafizul Islam A. B., Hill W. G. Ovulation rate of lines of mice selected for testis weight. Genet Res. 1976 Feb;27(1):23–32. doi: 10.1017/s0016672300016207. [DOI] [PubMed] [Google Scholar]
  16. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McKinney T. D., Desjardins C. Postnatal development of the testis, fighting behavior, and fertility in house mice. Biol Reprod. 1973 Oct;9(3):279–294. doi: 10.1093/biolreprod/9.3.279. [DOI] [PubMed] [Google Scholar]
  18. Michard-Vanhée C., Roubertoux P. Genetic analysis of differences in behavioral reactivity to neonatal injection of testosterone in female mice. Behav Genet. 1990 Jan;20(1):63–71. doi: 10.1007/BF01070741. [DOI] [PubMed] [Google Scholar]
  19. Shire J. G., Bartke A. Strain differences in testicular weight and spermatogenesis with special reference to C57BL-10J and DBA-2J mice. J Endocrinol. 1972 Oct;55(1):163–171. doi: 10.1677/joe.0.0550163. [DOI] [PubMed] [Google Scholar]
  20. Shukri N. M., Grew F., Shire J. G. Recessive mutation in a standard recombinant-inbred line of mice affects seminal vesicle shape. Genet Res. 1988 Aug;52(1):27–32. doi: 10.1017/s0016672300027270. [DOI] [PubMed] [Google Scholar]
  21. Shukri N. M., Shire J. G. Genetic variation in testicular development in mice of the C57BL/10ScSn, C57BL/6By and BALB/cBy strains and the CXB recombinant-inbred lines. J Reprod Fertil. 1989 Nov;87(2):587–592. doi: 10.1530/jrf.0.0870587. [DOI] [PubMed] [Google Scholar]
  22. Washburn L. L., Eicher E. M. Normal testis determination in the mouse depends on genetic interaction of a locus on chromosome 17 and the Y chromosome. Genetics. 1989 Sep;123(1):173–179. doi: 10.1093/genetics/123.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zídek V., Musilová A., Pintír J., Simáková M., Pravenec M. Genetic dissection of testicular weight in the mouse with the BXD recombinant inbred strains. Mamm Genome. 1998 Jul;9(7):503–505. doi: 10.1007/s003359900808. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES