Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):319–323. doi: 10.1093/genetics/158.1.319

Nonclinality of molecular variation implicates selection in maintaining a morphological cline of Drosophila melanogaster.

J Gockel 1, W J Kennington 1, A Hoffmann 1, D B Goldstein 1, L Partridge 1
PMCID: PMC1461653  PMID: 11333239

Abstract

One general approach for assessing whether phenotypic variation is due to selection is to test its correlation with presumably neutral molecular variation. Neutral variation is determined by population history, the most likely alternative explanation of spatial genetic structure, whereas phenotypic variation may be influenced by the spatial pattern of selection pressure. Several methods for comparing the spatial apportionment of molecular and morphological variation have been used. Here, we present an analysis of variance framework that compares the magnitudes of latitudinal effects for molecular and morphological variation along a body size cline in Australian Drosophila populations. Explicit incorporation of the relevant environmental gradient can result in a simple and powerful test of selection. For the Australian cline, our analysis provides strong internal evidence that the cline is due to selection.

Full Text

The Full Text of this article is available as a PDF (157.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry A., Kreitman M. Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics. 1993 Jul;134(3):869–893. doi: 10.1093/genetics/134.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gilchrist A. S., Partridge L. A comparison of the genetic basis of wing size divergence in three parallel body size clines of Drosophila melanogaster. Genetics. 1999 Dec;153(4):1775–1787. doi: 10.1093/genetics/153.4.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gloor G. B., Preston C. R., Johnson-Schlitz D. M., Nassif N. A., Phillis R. W., Benz W. K., Robertson H. M., Engels W. R. Type I repressors of P element mobility. Genetics. 1993 Sep;135(1):81–95. doi: 10.1093/genetics/135.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldstein D. B., Roemer G. W., Smith D. A., Reich D. E., Bergman A., Wayne R. K. The use of microsatellite variation to infer population structure and demographic history in a natural model system. Genetics. 1999 Feb;151(2):797–801. doi: 10.1093/genetics/151.2.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldstein D. B., Roemer G. W., Smith D. A., Reich D. E., Bergman A., Wayne R. K. The use of microsatellite variation to infer population structure and demographic history in a natural model system. Genetics. 1999 Feb;151(2):797–801. doi: 10.1093/genetics/151.2.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huey R. B., Gilchrist G. W., Carlson M. L., Berrigan D., Serra L. Rapid evolution of a geographic cline in size in an introduced fly. Science. 2000 Jan 14;287(5451):308–309. doi: 10.1126/science.287.5451.308. [DOI] [PubMed] [Google Scholar]
  7. James A. C., Azevedo R. B., Partridge L. Cellular basis and developmental timing in a size cline of Drosophila melanogaster. Genetics. 1995 Jun;140(2):659–666. doi: 10.1093/genetics/140.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. James A. C., Azevedo R. B., Partridge L. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics. 1997 Jul;146(3):881–890. doi: 10.1093/genetics/146.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Long A. D., Singh R. S. Molecules versus morphology: the detection of selection acting on morphological characters along a cline in Drosophila melanogaster. Heredity (Edinb) 1995 Jun;74(Pt 6):569–589. doi: 10.1038/hdy.1995.81. [DOI] [PubMed] [Google Scholar]
  10. Podolsky R. H., Holtsford T. P. Population structure of morphological traits in Clarkia dudleyana. I. Comparison of FST between allozymes and morphological traits. Genetics. 1995 Jun;140(2):733–744. doi: 10.1093/genetics/140.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Prout T., Barker J. S. F statistics in Drosophila buzzatii: selection, population size and inbreeding. Genetics. 1993 May;134(1):369–375. doi: 10.1093/genetics/134.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Spitze K. Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics. 1993 Oct;135(2):367–374. doi: 10.1093/genetics/135.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES