Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):341–350. doi: 10.1093/genetics/158.1.341

Sequence and chromosomal context effects on variegated expression of keratin 5/lacZ constructs in stratified epithelia of transgenic mice.

A Ramírez 1, E Milot 1, I Ponsa 1, C Marcos-Gutiérrez 1, A Page 1, M Santos 1, J Jorcano 1, M Vidal 1
PMCID: PMC1461655  PMID: 11333242

Abstract

The expression of transgene loci in mammals often occurs in a heterocellular fashion resulting in variegated patterns of expression. We have examined the effect of chromosomal integration site, copy number, and transcriptionally activating sequences on the variegation of a keratin 5-lacZ (K5Z) construct in the stratified epithelia of transgenic mice. lacZ expression in these mice is always mosaic, and the beta-gal activity per cell is usually higher in the lines with a higher proportion of expressing cells. Similar constructs, in which cDNAs were exchanged by lacZ sequences, showed no variegation. Also, when a strongly active, nonvariegating construct was coinjected with K5Z, most transgenic lines showed an almost homogeneous lacZ expression. The comparison of transgene arrays of different copies inserted at the same locus (obtained by using a lox/Cre system) showed that the reduction of copy number does not lead to an increase in the proportion of cells that express the transgene. Finally, in most of the variegating or nonexpressing lines the transgenes were located both at intermediate positions and at peritelomeric regions in the long chromosome arms. These findings suggest that the probability and efficiency of expression of K5Z genes depend on both long range chromosomal influences and on sequences in the transgene array.

Full Text

The Full Text of this article is available as a PDF (538.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allshire R. C., Javerzat J. P., Redhead N. J., Cranston G. Position effect variegation at fission yeast centromeres. Cell. 1994 Jan 14;76(1):157–169. doi: 10.1016/0092-8674(94)90180-5. [DOI] [PubMed] [Google Scholar]
  2. Araki K., Araki M., Miyazaki J., Vassalli P. Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):160–164. doi: 10.1073/pnas.92.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Assaad F. F., Tucker K. L., Signer E. R. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol. 1993 Sep;22(6):1067–1085. doi: 10.1007/BF00028978. [DOI] [PubMed] [Google Scholar]
  4. Bouhassira E. E., Westerman K., Leboulch P. Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood. 1997 Nov 1;90(9):3332–3344. [PubMed] [Google Scholar]
  5. Casanova L., Bravo A., Were F., Ramírez A., Jorcano J. J., Vidal M. Tissue-specific and efficient expression of the human simple epithelial keratin 8 gene in transgenic mice. J Cell Sci. 1995 Feb;108(Pt 2):811–820. doi: 10.1242/jcs.108.2.811. [DOI] [PubMed] [Google Scholar]
  6. Clark A. J., Harold G., Yull F. E. Mammalian cDNA and prokaryotic reporter sequences silence adjacent transgenes in transgenic mice. Nucleic Acids Res. 1997 Mar 1;25(5):1009–1014. doi: 10.1093/nar/25.5.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cryderman D. E., Morris E. J., Biessmann H., Elgin S. C., Wallrath L. L. Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles. EMBO J. 1999 Jul 1;18(13):3724–3735. doi: 10.1093/emboj/18.13.3724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cui C., Wani M. A., Wight D., Kopchick J., Stambrook P. J. Reporter genes in transgenic mice. Transgenic Res. 1994 May;3(3):182–194. doi: 10.1007/BF01973986. [DOI] [PubMed] [Google Scholar]
  9. Dobie K. W., Lee M., Fantes J. A., Graham E., Clark A. J., Springbett A., Lathe R., McClenaghan M. Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6659–6664. doi: 10.1073/pnas.93.13.6659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dorer D. R., Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell. 1994 Jul 1;77(7):993–1002. doi: 10.1016/0092-8674(94)90439-1. [DOI] [PubMed] [Google Scholar]
  11. Elliott J. I., Festenstein R., Tolaini M., Kioussis D. Random activation of a transgene under the control of a hybrid hCD2 locus control region/Ig enhancer regulatory element. EMBO J. 1995 Feb 1;14(3):575–584. doi: 10.1002/j.1460-2075.1995.tb07033.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Festenstein R., Tolaini M., Corbella P., Mamalaki C., Parrington J., Fox M., Miliou A., Jones M., Kioussis D. Locus control region function and heterochromatin-induced position effect variegation. Science. 1996 Feb 23;271(5252):1123–1125. doi: 10.1126/science.271.5252.1123. [DOI] [PubMed] [Google Scholar]
  13. Francastel C., Walters M. C., Groudine M., Martin D. I. A functional enhancer suppresses silencing of a transgene and prevents its localization close to centrometric heterochromatin. Cell. 1999 Oct 29;99(3):259–269. doi: 10.1016/s0092-8674(00)81657-8. [DOI] [PubMed] [Google Scholar]
  14. Fuchs E., Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382. doi: 10.1146/annurev.bi.63.070194.002021. [DOI] [PubMed] [Google Scholar]
  15. Garrick D., Fiering S., Martin D. I., Whitelaw E. Repeat-induced gene silencing in mammals. Nat Genet. 1998 Jan;18(1):56–59. doi: 10.1038/ng0198-56. [DOI] [PubMed] [Google Scholar]
  16. Garrick D., Sutherland H., Robertson G., Whitelaw E. Variegated expression of a globin transgene correlates with chromatin accessibility but not methylation status. Nucleic Acids Res. 1996 Dec 15;24(24):4902–4909. doi: 10.1093/nar/24.24.4902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gottschling D. E., Aparicio O. M., Billington B. L., Zakian V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 1990 Nov 16;63(4):751–762. doi: 10.1016/0092-8674(90)90141-z. [DOI] [PubMed] [Google Scholar]
  18. Graubert T. A., Hug B. A., Wesselschmidt R., Hsieh C. L., Ryan T. M., Townes T. M., Ley T. J. Stochastic, stage-specific mechanisms account for the variegation of a human globin transgene. Nucleic Acids Res. 1998 Jun 15;26(12):2849–2858. doi: 10.1093/nar/26.12.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guy L. G., Kothary R., DeRepentigny Y., Delvoye N., Ellis J., Wall L. The beta-globin locus control region enhances transcription of but does not confer position-independent expression onto the lacZ gene in transgenic mice. EMBO J. 1996 Jul 15;15(14):3713–3721. [PMC free article] [PubMed] [Google Scholar]
  20. Hanish J. P., Yanowitz J. L., de Lange T. Stringent sequence requirements for the formation of human telomeres. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8861–8865. doi: 10.1073/pnas.91.19.8861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Henikoff S. Position-effect variegation after 60 years. Trends Genet. 1990 Dec;6(12):422–426. doi: 10.1016/0168-9525(90)90304-o. [DOI] [PubMed] [Google Scholar]
  22. Huber M. C., Krüger G., Bonifer C. Genomic position effects lead to an inefficient reorganization of nucleosomes in the 5'-regulatory region of the chicken lysozyme locus in transgenic mice. Nucleic Acids Res. 1996 Apr 15;24(8):1443–1452. doi: 10.1093/nar/24.8.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McKnight R. A., Shamay A., Sankaran L., Wall R. J., Hennighausen L. Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6943–6947. doi: 10.1073/pnas.89.15.6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meyer P., Heidmann I., Niedenhof I. Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J. 1993 Jul;4(1):89–100. doi: 10.1046/j.1365-313x.1993.04010089.x. [DOI] [PubMed] [Google Scholar]
  25. Milot E., Strouboulis J., Trimborn T., Wijgerde M., de Boer E., Langeveld A., Tan-Un K., Vergeer W., Yannoutsos N., Grosveld F. Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell. 1996 Oct 4;87(1):105–114. doi: 10.1016/s0092-8674(00)81327-6. [DOI] [PubMed] [Google Scholar]
  26. Morley S. D., Viard I., Chung B. C., Ikeda Y., Parker K. L., Mullins J. J. Variegated expression of a mouse steroid 21-hydroxylase/beta- galactosidase transgene suggests centripetal migration of adrenocortical cells. Mol Endocrinol. 1996 May;10(5):585–598. doi: 10.1210/mend.10.5.8732689. [DOI] [PubMed] [Google Scholar]
  27. Ofir R., Wong A. C., McDermid H. E., Skorecki K. L., Selig S. Position effect of human telomeric repeats on replication timing. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11434–11439. doi: 10.1073/pnas.96.20.11434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Paldi A., Deltour L., Jami J. Cis effect of lacZ sequences in transgenic mice. Transgenic Res. 1993 Nov;2(6):325–329. doi: 10.1007/BF01976173. [DOI] [PubMed] [Google Scholar]
  29. Pierce A. M., Fisher S. M., Conti C. J., Johnson D. G. Deregulated expression of E2F1 induces hyperplasia and cooperates with ras in skin tumor development. Oncogene. 1998 Mar 12;16(10):1267–1276. doi: 10.1038/sj.onc.1201666. [DOI] [PubMed] [Google Scholar]
  30. Porter S. D., Meyer C. J. A distal tyrosinase upstream element stimulates gene expression in neural-crest-derived melanocytes of transgenic mice: position-independent and mosaic expression. Development. 1994 Aug;120(8):2103–2111. doi: 10.1242/dev.120.8.2103. [DOI] [PubMed] [Google Scholar]
  31. Ramírez A., Bravo A., Jorcano J. L., Vidal M. Sequences 5' of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation. 1994 Nov;58(1):53–64. doi: 10.1046/j.1432-0436.1994.5810053.x. [DOI] [PubMed] [Google Scholar]
  32. Rieger M., Franke W. W. Identification of an orthologous mammalian cytokeratin gene. High degree of intron sequence conservation during evolution of human cytokeratin 10. J Mol Biol. 1988 Dec 20;204(4):841–856. doi: 10.1016/0022-2836(88)90045-9. [DOI] [PubMed] [Google Scholar]
  33. Robles A. I., Larcher F., Whalin R. B., Murillas R., Richie E., Gimenez-Conti I. B., Jorcano J. L., Conti C. J. Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7634–7638. doi: 10.1073/pnas.93.15.7634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sabl J. F., Henikoff S. Copy number and orientation determine the susceptibility of a gene to silencing by nearby heterochromatin in Drosophila. Genetics. 1996 Feb;142(2):447–458. doi: 10.1093/genetics/142.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stief A., Winter D. M., Strätling W. H., Sippel A. E. A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature. 1989 Sep 28;341(6240):343–345. doi: 10.1038/341343a0. [DOI] [PubMed] [Google Scholar]
  36. Sutherland H. G., Martin D. I., Whitelaw E. A globin enhancer acts by increasing the proportion of erythrocytes expressing a linked transgene. Mol Cell Biol. 1997 Mar;17(3):1607–1614. doi: 10.1128/mcb.17.3.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thorey I. S., Meneses J. J., Neznanov N., Kulesh D. A., Pedersen R. A., Oshima R. G. Embryonic expression of human keratin 18 and K18-beta-galactosidase fusion genes in transgenic mice. Dev Biol. 1993 Dec;160(2):519–534. doi: 10.1006/dbio.1993.1326. [DOI] [PubMed] [Google Scholar]
  38. Wang D., Russell J. L., Johnson D. G. E2F4 and E2F1 have similar proliferative properties but different apoptotic and oncogenic properties in vivo. Mol Cell Biol. 2000 May;20(10):3417–3424. doi: 10.1128/mcb.20.10.3417-3424.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Whitelaw B., Webster J. Chromatin heterogeneity within multicopy transgene arrays. Transgenic Res. 1998 Sep;7(5):401–402. doi: 10.1023/a:1008889302555. [DOI] [PubMed] [Google Scholar]
  40. Zhuma T., Tyrrell R., Sekkali B., Skavdis G., Saveliev A., Tolaini M., Roderick K., Norton T., Smerdon S., Sedgwick S. Human HMG box transcription factor HBP1: a role in hCD2 LCR function. EMBO J. 1999 Nov 15;18(22):6396–6406. doi: 10.1093/emboj/18.22.6396. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES