Skip to main content
Genetics logoLink to Genetics
. 2001 Jun;158(2):643–655. doi: 10.1093/genetics/158.2.643

Goalpha regulates volatile anesthetic action in Caenorhabditis elegans.

B van Swinderen 1, L B Metz 1, L D Shebester 1, J E Mendel 1, P W Sternberg 1, C M Crowder 1
PMCID: PMC1461665  PMID: 11404329

Abstract

To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the alpha-subunit of Go, have EC(50)s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goalpha, and presynaptic Goalpha-effectors are candidate VA molecular targets.

Full Text

The Full Text of this article is available as a PDF (292.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crowder C. M., Shebester L. D., Schedl T. Behavioral effects of volatile anesthetics in Caenorhabditis elegans. Anesthesiology. 1996 Oct;85(4):901–912. doi: 10.1097/00000542-199610000-00027. [DOI] [PubMed] [Google Scholar]
  3. Denker B. M., Neer E. J., Schmidt C. J. Mutagenesis of the amino terminus of the alpha subunit of the G protein Go. In vitro characterization of alpha o beta gamma interactions. J Biol Chem. 1992 Mar 25;267(9):6272–6277. [PubMed] [Google Scholar]
  4. Denker B. M., Schmidt C. J., Neer E. J. Promotion of the GTP-liganded state of the Go alpha protein by deletion of the C terminus. J Biol Chem. 1992 May 15;267(14):9998–10002. [PubMed] [Google Scholar]
  5. Dohlman H. G., Thorner J. RGS proteins and signaling by heterotrimeric G proteins. J Biol Chem. 1997 Feb 14;272(7):3871–3874. doi: 10.1074/jbc.272.7.3871. [DOI] [PubMed] [Google Scholar]
  6. Dolphin A. C., Pearson H. A., Menon-Johansson A. S., Sweeney M. I., Sutton K., Huston E., Cullen G. P., Scott R. H. G protein modulation of voltage-dependent calcium channels and transmitter release. Biochem Soc Trans. 1993 May;21(2):391–395. doi: 10.1042/bst0210391. [DOI] [PubMed] [Google Scholar]
  7. Franks N. P., Lieb W. R. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994 Feb 17;367(6464):607–614. doi: 10.1038/367607a0. [DOI] [PubMed] [Google Scholar]
  8. Fujita Y., Sasaki T., Fukui K., Kotani H., Kimura T., Hata Y., Südhof T. C., Scheller R. H., Takai Y. Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J Biol Chem. 1996 Mar 29;271(13):7265–7268. doi: 10.1074/jbc.271.13.7265. [DOI] [PubMed] [Google Scholar]
  9. Gamo S., Dodo K., Matakatsu H., Tanaka Y. Molecular genetical analysis of Drosophila ether sensitive mutants. Toxicol Lett. 1998 Nov 23;100-101:329–337. doi: 10.1016/s0378-4274(98)00203-3. [DOI] [PubMed] [Google Scholar]
  10. Ganetzky B., Wu C. F. Drosophila mutants with opposing effects on nerve excitability: genetic and spatial interactions in repetitive firing. J Neurophysiol. 1982 Mar;47(3):501–514. doi: 10.1152/jn.1982.47.3.501. [DOI] [PubMed] [Google Scholar]
  11. Goodman M. B., Hall D. H., Avery L., Lockery S. R. Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron. 1998 Apr;20(4):763–772. doi: 10.1016/s0896-6273(00)81014-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hajdu-Cronin Y. M., Chen W. J., Patikoglou G., Koelle M. R., Sternberg P. W. Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes Dev. 1999 Jul 15;13(14):1780–1793. doi: 10.1101/gad.13.14.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hescheler J., Schultz G. Heterotrimeric G proteins involved in the modulation of voltage-dependent calcium channels of neuroendocrine cells. Ann N Y Acad Sci. 1994 Sep 15;733:306–312. doi: 10.1111/j.1749-6632.1994.tb17280.x. [DOI] [PubMed] [Google Scholar]
  14. Huang L. S., Sternberg P. W. Genetic dissection of developmental pathways. Methods Cell Biol. 1995;48:97–122. doi: 10.1016/s0091-679x(08)61385-0. [DOI] [PubMed] [Google Scholar]
  15. Jan Y. N., Jan L. Y., Dennis M. J. Two mutations of synaptic transmission in Drosophila. Proc R Soc Lond B Biol Sci. 1977 Jul 28;198(1130):87–108. doi: 10.1098/rspb.1977.0087. [DOI] [PubMed] [Google Scholar]
  16. Koelle M. R., Horvitz H. R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell. 1996 Jan 12;84(1):115–125. doi: 10.1016/s0092-8674(00)80998-8. [DOI] [PubMed] [Google Scholar]
  17. Kullmann D. M., Martin R. L., Redman S. J. Reduction by general anaesthetics of group Ia excitatory postsynaptic potentials and currents in the cat spinal cord. J Physiol. 1989 May;412:277–296. doi: 10.1113/jphysiol.1989.sp017615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lackner M. R., Nurrish S. J., Kaplan J. M. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron. 1999 Oct;24(2):335–346. doi: 10.1016/s0896-6273(00)80848-x. [DOI] [PubMed] [Google Scholar]
  19. Leibovitch B. A., Campbell D. B., Krishnan K. S., Nash H. A. Mutations that affect ion channels change the sensitivity of Drosophila melanogaster to volatile anesthetics. J Neurogenet. 1995 Apr;10(1):1–13. doi: 10.3109/01677069509083455. [DOI] [PubMed] [Google Scholar]
  20. Linder M. E., Pang I. H., Duronio R. J., Gordon J. I., Sternweis P. C., Gilman A. G. Lipid modifications of G protein subunits. Myristoylation of Go alpha increases its affinity for beta gamma. J Biol Chem. 1991 Mar 5;266(7):4654–4659. [PubMed] [Google Scholar]
  21. Lochrie M. A., Mendel J. E., Sternberg P. W., Simon M. I. Homologous and unique G protein alpha subunits in the nematode Caenorhabditis elegans. Cell Regul. 1991 Feb;2(2):135–154. doi: 10.1091/mbc.2.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maclver M. B., Mikulec A. A., Amagasu S. M., Monroe F. A. Volatile anesthetics depress glutamate transmission via presynaptic actions. Anesthesiology. 1996 Oct;85(4):823–834. doi: 10.1097/00000542-199610000-00018. [DOI] [PubMed] [Google Scholar]
  23. Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. [PubMed] [Google Scholar]
  24. Mendel J. E., Korswagen H. C., Liu K. S., Hajdu-Cronin Y. M., Simon M. I., Plasterk R. H., Sternberg P. W. Participation of the protein Go in multiple aspects of behavior in C. elegans. Science. 1995 Mar 17;267(5204):1652–1655. doi: 10.1126/science.7886455. [DOI] [PubMed] [Google Scholar]
  25. Miao N., Frazer M. J., Lynch C., 3rd Volatile anesthetics depress Ca2+ transients and glutamate release in isolated cerebral synaptosomes. Anesthesiology. 1995 Sep;83(3):593–603. doi: 10.1097/00000542-199509000-00019. [DOI] [PubMed] [Google Scholar]
  26. Mihic S. J., Ye Q., Wick M. J., Koltchine V. V., Krasowski M. D., Finn S. E., Mascia M. P., Valenzuela C. F., Hanson K. K., Greenblatt E. P. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997 Sep 25;389(6649):385–389. doi: 10.1038/38738. [DOI] [PubMed] [Google Scholar]
  27. Miller K. G., Alfonso A., Nguyen M., Crowell J. A., Johnson C. D., Rand J. B. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12593–12598. doi: 10.1073/pnas.93.22.12593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miller K. G., Emerson M. D., Rand J. B. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron. 1999 Oct;24(2):323–333. doi: 10.1016/s0896-6273(00)80847-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mumby S. M., Heukeroth R. O., Gordon J. I., Gilman A. G. G-protein alpha-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci U S A. 1990 Jan;87(2):728–732. doi: 10.1073/pnas.87.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nguyen M., Alfonso A., Johnson C. D., Rand J. B. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics. 1995 Jun;140(2):527–535. doi: 10.1093/genetics/140.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nishikawa K., Kidokoro Y. Halothane presynaptically depresses synaptic transmission in wild-type Drosophila larvae but not in halothane-resistant (har) mutants. Anesthesiology. 1999 Jun;90(6):1691–1697. doi: 10.1097/00000542-199906000-00026. [DOI] [PubMed] [Google Scholar]
  32. Noel J. P., Hamm H. E., Sigler P. B. The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. Nature. 1993 Dec 16;366(6456):654–663. doi: 10.1038/366654a0. [DOI] [PubMed] [Google Scholar]
  33. Nurrish S., Ségalat L., Kaplan J. M. Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron. 1999 Sep;24(1):231–242. doi: 10.1016/s0896-6273(00)80835-1. [DOI] [PubMed] [Google Scholar]
  34. Perouansky M., Baranov D., Salman M., Yaari Y. Effects of halothane on glutamate receptor-mediated excitatory postsynaptic currents. A patch-clamp study in adult mouse hippocampal slices. Anesthesiology. 1995 Jul;83(1):109–119. doi: 10.1097/00000542-199507000-00014. [DOI] [PubMed] [Google Scholar]
  35. Pocock G., Richards C. D. Cellular mechanisms in general anaesthesia. Br J Anaesth. 1991 Jan;66(1):116–128. doi: 10.1093/bja/66.1.116. [DOI] [PubMed] [Google Scholar]
  36. Pocock G., Richards C. D. Excitatory and inhibitory synaptic mechanisms in anaesthesia. Br J Anaesth. 1993 Jul;71(1):134–147. doi: 10.1093/bja/71.1.134. [DOI] [PubMed] [Google Scholar]
  37. Raizen D. M., Avery L. Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron. 1994 Mar;12(3):483–495. doi: 10.1016/0896-6273(94)90207-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rasenick M. M., Watanabe M., Lazarevic M. B., Hatta S., Hamm H. E. Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors. J Biol Chem. 1994 Aug 26;269(34):21519–21525. [PubMed] [Google Scholar]
  39. Richmond J. E., Davis W. S., Jorgensen E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci. 1999 Nov;2(11):959–964. doi: 10.1038/14755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Saifee O., Wei L., Nonet M. L. The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol Biol Cell. 1998 Jun;9(6):1235–1252. doi: 10.1091/mbc.9.6.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sassa T., Harada S., Ogawa H., Rand J. B., Maruyama I. N., Hosono R. Regulation of the UNC-18-Caenorhabditis elegans syntaxin complex by UNC-13. J Neurosci. 1999 Jun 15;19(12):4772–4777. doi: 10.1523/JNEUROSCI.19-12-04772.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schlame M., Hemmings H. C., Jr Inhibition by volatile anesthetics of endogenous glutamate release from synaptosomes by a presynaptic mechanism. Anesthesiology. 1995 Jun;82(6):1406–1416. doi: 10.1097/00000542-199506000-00012. [DOI] [PubMed] [Google Scholar]
  43. Shimazaki Y., Nishiki T., Omori A., Sekiguchi M., Kamata Y., Kozaki S., Takahashi M. Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem. 1996 Jun 14;271(24):14548–14553. doi: 10.1074/jbc.271.24.14548. [DOI] [PubMed] [Google Scholar]
  44. Stanley E. F., Mirotznik R. R. Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels. Nature. 1997 Jan 23;385(6614):340–343. doi: 10.1038/385340a0. [DOI] [PubMed] [Google Scholar]
  45. Stringham E. G., Dixon D. K., Jones D., Candido E. P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol Biol Cell. 1992 Feb;3(2):221–233. doi: 10.1091/mbc.3.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sulston J. E., Brenner S. The DNA of Caenorhabditis elegans. Genetics. 1974 May;77(1):95–104. doi: 10.1093/genetics/77.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ségalat L., Elkes D. A., Kaplan J. M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science. 1995 Mar 17;267(5204):1648–1651. doi: 10.1126/science.7886454. [DOI] [PubMed] [Google Scholar]
  48. Südhof T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995 Jun 22;375(6533):645–653. doi: 10.1038/375645a0. [DOI] [PubMed] [Google Scholar]
  49. Takenoshita M., Takahashi T. Mechanisms of halothane action on synaptic transmission in motoneurons of the newborn rat spinal cord in vitro. Brain Res. 1987 Feb 3;402(2):303–310. doi: 10.1016/0006-8993(87)90037-0. [DOI] [PubMed] [Google Scholar]
  50. Tinklenberg J. A., Segal I. S., Guo T. Z., Maze M. Analysis of anesthetic action on the potassium channels of the Shaker mutant of Drosophila. Ann N Y Acad Sci. 1991;625:532–539. doi: 10.1111/j.1749-6632.1991.tb33884.x. [DOI] [PubMed] [Google Scholar]
  51. Waud D. R. On biological assays involving quantal responses. J Pharmacol Exp Ther. 1972 Dec;183(3):577–607. [PubMed] [Google Scholar]
  52. Zhang J. F., Ellinor P. T., Aldrich R. W., Tsien R. W. Multiple structural elements in voltage-dependent Ca2+ channels support their inhibition by G proteins. Neuron. 1996 Nov;17(5):991–1003. doi: 10.1016/s0896-6273(00)80229-9. [DOI] [PubMed] [Google Scholar]
  53. Zorychta E., Capek R. Depression of spinal monosynaptic transmission by diethyl ether: quantal analysis of unitary synaptic potentials. J Pharmacol Exp Ther. 1978 Dec;207(3):825–836. [PubMed] [Google Scholar]
  54. van Swinderen B., Saifee O., Shebester L., Roberson R., Nonet M. L., Crowder C. M. A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2479–2484. doi: 10.1073/pnas.96.5.2479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. van Swinderen B., Shook D. R., Ebert R. H., Cherkasova V. A., Johnson T. E., Shmookler Reis R. J., Crowder C. M. Quantitative trait loci controlling halothane sensitivity in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8232–8237. doi: 10.1073/pnas.94.15.8232. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES