Skip to main content
Genetics logoLink to Genetics
. 2001 Jun;158(2):897–912. doi: 10.1093/genetics/158.2.897

Estimating the time to the most recent common ancestor for the Y chromosome or mitochondrial DNA for a pair of individuals.

B Walsh 1
PMCID: PMC1461668  PMID: 11404350

Abstract

Bayesian posterior distributions are obtained for the time to the most recent common ancestor (MRCA) for a nonrecombining segment of DNA (such as the nonpseudoautosomal arm of the Y chromosome or the mitochondrial genome) for two individuals given that they match at k out of n scored markers. We argue that the distribution of the time t to the MRCA is the most natural measure of relatedness for such nonrecombining regions. Both an infinite-alleles (no recurring mutants) and stepwise mutation model are examined, and these agree well when n is moderate to large and k/n is close to one. As expected, the infinite alleles model underestimates t relative to the stepwise model. Using a modest number (20) of microsatellite markers is sufficient to obtain reasonably precise estimates of t for individuals separated by 200 or less generations. Hence, the multilocus haplotypes of two individuals can be used not only to date very deep ancestry but also rather recent ancestry as well. Finally, our results have forensic implications in that a complete match at all markers between a suspect and a sample excludes only a modest subset of the population unless a very large number of markers (>500 microsatellites) are used.

Full Text

The Full Text of this article is available as a PDF (314.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bianchi N. O., Catanesi C. I., Bailliet G., Martinez-Marignac V. L., Bravi C. M., Vidal-Rioja L. B., Herrera R. J., López-Camelo J. S. Characterization of ancestral and derived Y-chromosome haplotypes of New World native populations. Am J Hum Genet. 1998 Dec;63(6):1862–1871. doi: 10.1086/302141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blouin M. S., Parsons M., Lacaille V., Lotz S. Use of microsatellite loci to classify individuals by relatedness. Mol Ecol. 1996 Jun;5(3):393–401. doi: 10.1111/j.1365-294x.1996.tb00329.x. [DOI] [PubMed] [Google Scholar]
  3. Brinkmann B., Klintschar M., Neuhuber F., Hühne J., Rolf B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet. 1998 Jun;62(6):1408–1415. doi: 10.1086/301869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown M. D., Hosseini S. H., Torroni A., Bandelt H. J., Allen J. C., Schurr T. G., Scozzari R., Cruciani F., Wallace D. C. mtDNA haplogroup X: An ancient link between Europe/Western Asia and North America? Am J Hum Genet. 1998 Dec;63(6):1852–1861. doi: 10.1086/302155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deka R., Jin L., Shriver M. D., Yu L. M., Saha N., Barrantes R., Chakraborty R., Ferrell R. E. Dispersion of human Y chromosome haplotypes based on five microsatellites in global populations. Genome Res. 1996 Dec;6(12):1177–1184. doi: 10.1101/gr.6.12.1177. [DOI] [PubMed] [Google Scholar]
  6. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donnelly P., Tavaré S., Balding D. J., Griffiths R. C. Estimating the age of the common ancestor of men from the ZFY intron. Science. 1996 May 31;272(5266):1357–1362. doi: 10.1126/science.272.5266.1357. [DOI] [PubMed] [Google Scholar]
  8. Donnelly P., Tavaré S. Coalescents and genealogical structure under neutrality. Annu Rev Genet. 1995;29:401–421. doi: 10.1146/annurev.ge.29.120195.002153. [DOI] [PubMed] [Google Scholar]
  9. Edwards A., Hammond H. A., Jin L., Caskey C. T., Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992 Feb;12(2):241–253. doi: 10.1016/0888-7543(92)90371-x. [DOI] [PubMed] [Google Scholar]
  10. Fu Y. X., Li W. H. Estimating the age of the common ancestor of men from the ZFY intron. Science. 1996 May 31;272(5266):1356–1362. doi: 10.1126/science.272.5266.1356. [DOI] [PubMed] [Google Scholar]
  11. Heyer E., Puymirat J., Dieltjes P., Bakker E., de Knijff P. Estimating Y chromosome specific microsatellite mutation frequencies using deep rooting pedigrees. Hum Mol Genet. 1997 May;6(5):799–803. doi: 10.1093/hmg/6.5.799. [DOI] [PubMed] [Google Scholar]
  12. Kayser M., Roewer L., Hedman M., Henke L., Henke J., Brauer S., Krüger C., Krawczak M., Nagy M., Dobosz T. Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs. Am J Hum Genet. 2000 Apr 6;66(5):1580–1588. doi: 10.1086/302905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kittles R. A., Perola M., Peltonen L., Bergen A. W., Aragon R. A., Virkkunen M., Linnoila M., Goldman D., Long J. C. Dual origins of Finns revealed by Y chromosome haplotype variation. Am J Hum Genet. 1998 May;62(5):1171–1179. doi: 10.1086/301831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lynch M., Ritland K. Estimation of pairwise relatedness with molecular markers. Genetics. 1999 Aug;152(4):1753–1766. doi: 10.1093/genetics/152.4.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marshall T. C., Slate J., Kruuk L. E., Pemberton J. M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol. 1998 May;7(5):639–655. doi: 10.1046/j.1365-294x.1998.00374.x. [DOI] [PubMed] [Google Scholar]
  16. Merriwether D. A., Rothhammer F., Ferrell R. E. Distribution of the four founding lineage haplotypes in Native Americans suggests a single wave of migration for the New World. Am J Phys Anthropol. 1995 Dec;98(4):411–430. doi: 10.1002/ajpa.1330980404. [DOI] [PubMed] [Google Scholar]
  17. Nielsen R. Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics. 2000 Feb;154(2):931–942. doi: 10.1093/genetics/154.2.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  19. Shriver M. D., Jin L., Chakraborty R., Boerwinkle E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics. 1993 Jul;134(3):983–993. doi: 10.1093/genetics/134.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stone A. C., Stoneking M. mtDNA analysis of a prehistoric Oneota population: implications for the peopling of the New World. Am J Hum Genet. 1998 May;62(5):1153–1170. doi: 10.1086/301838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tavaré S., Balding D. J., Griffiths R. C., Donnelly P. Inferring coalescence times from DNA sequence data. Genetics. 1997 Feb;145(2):505–518. doi: 10.1093/genetics/145.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thomas M. G., Parfitt T., Weiss D. A., Skorecki K., Wilson J. F., le Roux M., Bradman N., Goldstein D. B. Y chromosomes traveling south: the cohen modal haplotype and the origins of the Lemba--the "Black Jews of Southern Africa". Am J Hum Genet. 2000 Feb;66(2):674–686. doi: 10.1086/302749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Torroni A., Bandelt H. J., D'Urbano L., Lahermo P., Moral P., Sellitto D., Rengo C., Forster P., Savontaus M. L., Bonné-Tamir B. mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe. Am J Hum Genet. 1998 May;62(5):1137–1152. doi: 10.1086/301822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Torroni A., Neel J. V., Barrantes R., Schurr T. G., Wallace D. C. Mitochondrial DNA "clock" for the Amerinds and its implications for timing their entry into North America. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1158–1162. doi: 10.1073/pnas.91.3.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walsh J. B. Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics. 1987 Mar;115(3):553–567. doi: 10.1093/genetics/115.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  28. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
  29. Wilson I. J., Balding D. J. Genealogical inference from microsatellite data. Genetics. 1998 Sep;150(1):499–510. doi: 10.1093/genetics/150.1.499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES