Abstract
Bacteriophage lambda is a double-stranded DNA virus that processes concatemeric DNA into virion chromosomes by cutting at specific recognition sites termed cos. A cos is composed of three subsites: cosN, the nicking site; cosB, required for packaging initiation; and cosQ, required for termination of chromosome packaging. During packaging termination, nicking of the bottom strand of cosN depends on cosQ, suggesting that cosQ is needed to deliver terminase to the bottom strand of cosN to carry out nicking. In the present work, saturation mutagenesis showed that a 7-bp segment comprises cosQ. A proposal that cosQ function requires an optimal sequence match between cosQ and cosNR, the right cosN half-site, was tested by constructing double cosQ mutants; the behavior of the double mutants was inconsistent with the proposal. Substitutions in the 17-bp region between cosQ and cosN resulted in no major defects in chromosome packaging. Insertional mutagenesis indicated that proper spacing between cosQ and cosN is required. The lethality of integral helical insertions eliminated a model in which DNA looping enables cosQ to deliver a gpA protomer for nicking at cosN. The 7 bp of cosQ coincide exactly with the recognition sequence for the Escherichia coli restriction endonuclease, EcoO109I.
Full Text
The Full Text of this article is available as a PDF (309.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arens J. S., Hang Q., Hwang Y., Tuma B., Max S., Feiss M. Mutations that extend the specificity of the endonuclease activity of lambda terminase. J Bacteriol. 1999 Jan;181(1):218–224. doi: 10.1128/jb.181.1.218-224.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bear S. E., Court D. L., Friedman D. I. An accessory role for Escherichia coli integration host factor: characterization of a lambda mutant dependent upon integration host factor for DNA packaging. J Virol. 1984 Dec;52(3):966–972. doi: 10.1128/jvi.52.3.966-972.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker A., Marko M., Gold M. Early events in the in vitro packaging of bacteriophage lambda DNA. Virology. 1977 May 1;78(1):291–305. doi: 10.1016/0042-6822(77)90100-3. [DOI] [PubMed] [Google Scholar]
- Becker A., Murialdo H. Bacteriophage lambda DNA: the beginning of the end. J Bacteriol. 1990 Jun;172(6):2819–2824. doi: 10.1128/jb.172.6.2819-2824.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catalano C. E., Cue D., Feiss M. Virus DNA packaging: the strategy used by phage lambda. Mol Microbiol. 1995 Jun;16(6):1075–1086. doi: 10.1111/j.1365-2958.1995.tb02333.x. [DOI] [PubMed] [Google Scholar]
- Cue D., Feiss M. Genetic analysis of cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda. J Mol Biol. 1992 Nov 5;228(1):58–71. doi: 10.1016/0022-2836(92)90491-2. [DOI] [PubMed] [Google Scholar]
- Cue D., Feiss M. Genetic evidence that recognition of cosQ, the signal for termination of phage lambda DNA packaging, depends on the extent of head filling. Genetics. 1997 Sep;147(1):7–17. doi: 10.1093/genetics/147.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cue D., Feiss M. Termination of packaging of the bacteriophage lambda chromosome: cosQ is required for nicking the bottom strand of cosN. J Mol Biol. 1998 Jul 3;280(1):11–29. doi: 10.1006/jmbi.1998.1841. [DOI] [PubMed] [Google Scholar]
- Davidson A. R., Gold M. Mutations abolishing the endonuclease activity of bacteriophage lambda terminase lie in two distinct regions of the A gene, one of which may encode a "leucine zipper" DNA-binding domain. Virology. 1992 Jul;189(1):21–30. doi: 10.1016/0042-6822(92)90677-h. [DOI] [PubMed] [Google Scholar]
- Davidson A., Gold M. A novel in vitro DNA packaging system demonstrating a direct role for the bacteriophage lambda FI gene product. Virology. 1987 Dec;161(2):305–314. doi: 10.1016/0042-6822(87)90122-x. [DOI] [PubMed] [Google Scholar]
- Emmons S. W. Bacteriophage lambda derivatives carrying two copies of the cohesive end site. J Mol Biol. 1974 Mar 15;83(4):511–525. doi: 10.1016/0022-2836(74)90511-7. [DOI] [PubMed] [Google Scholar]
- Feiss M., Sippy J., Miller G. Processive action of terminase during sequential packaging of bacteriophage lambda chromosomes. J Mol Biol. 1985 Dec 20;186(4):759–771. doi: 10.1016/0022-2836(85)90395-x. [DOI] [PubMed] [Google Scholar]
- Feiss M., Widner W., Miller G., Johnson G., Christiansen S. Structure of the bacteriophage lambda cohesive end site: location of the sites of terminase binding (cosB) and nicking (cosN). Gene. 1983 Oct;24(2-3):207–218. doi: 10.1016/0378-1119(83)90081-1. [DOI] [PubMed] [Google Scholar]
- Frackman S., Siegele D. A., Feiss M. A functional domain of bacteriophage lambda terminase for prohead binding. J Mol Biol. 1984 Dec 5;180(2):283–300. doi: 10.1016/s0022-2836(84)80005-4. [DOI] [PubMed] [Google Scholar]
- Golz S., Kemper B. Association of holliday-structure resolving endonuclease VII with gp20 from the packaging machine of phage T4. J Mol Biol. 1999 Jan 22;285(3):1131–1144. doi: 10.1006/jmbi.1998.2399. [DOI] [PubMed] [Google Scholar]
- Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
- Higgins R. R., Becker A. Interaction of terminase, the DNA packaging enzyme of phage lambda, with its cos DNA substrate. J Mol Biol. 1995 Sep 8;252(1):31–46. doi: 10.1006/jmbi.1995.0473. [DOI] [PubMed] [Google Scholar]
- Higgins R. R., Becker A. The lambda terminase enzyme measures the point of its endonucleolytic attack 47 +/- 2 bp away from its site of specific DNA binding, the R site. EMBO J. 1994 Dec 15;13(24):6162–6171. doi: 10.1002/j.1460-2075.1994.tb06963.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins R. R., Lucko H. J., Becker A. Mechanism of cos DNA cleavage by bacteriophage lambda terminase: multiple roles of ATP. Cell. 1988 Sep 9;54(6):765–775. doi: 10.1016/s0092-8674(88)91021-5. [DOI] [PubMed] [Google Scholar]
- Hwang Y., Feiss M. A defined system for in vitro lambda DNA packaging. Virology. 1995 Aug 20;211(2):367–376. doi: 10.1006/viro.1995.1419. [DOI] [PubMed] [Google Scholar]
- Hwang Y., Feiss M. Mutations affecting the high affinity ATPase center of gpA, the large subunit of bacteriophage lambda terminase, inactivate the endonuclease activity of terminase. J Mol Biol. 1996 Aug 30;261(4):524–535. doi: 10.1006/jmbi.1996.0480. [DOI] [PubMed] [Google Scholar]
- Luftig R. B., Wood W. B., Okinaka R. Bacteriophage T4 head morphogenesis. On the nature of gene 49-defective heads and their role as intermediates. J Mol Biol. 1971 May 14;57(3):555–573. doi: 10.1016/0022-2836(71)90109-4. [DOI] [PubMed] [Google Scholar]
- Miller G., Feiss M. The bacteriophage lambda cohesive end site: isolation of spacing/substitution mutations that result in dependence on Escherichia coli integration host factor. Mol Gen Genet. 1988 Apr;212(1):157–165. doi: 10.1007/BF00322459. [DOI] [PubMed] [Google Scholar]
- Mise K., Nakajima K. Restriction endonuclease EcoO109 from Escherichia coli H709c with heptanucleotide recognition site 5'-PuG/GNCCPy. Gene. 1985;36(3):363–367. doi: 10.1016/0378-1119(85)90192-1. [DOI] [PubMed] [Google Scholar]
- Miwa T., Matsubara K. Lambda phage DNA sequences affecting the packaging process. Gene. 1983 Oct;24(2-3):199–206. doi: 10.1016/0378-1119(83)90080-x. [DOI] [PubMed] [Google Scholar]
- Mizuuchi K., Kemper B., Hays J., Weisberg R. A. T4 endonuclease VII cleaves holliday structures. Cell. 1982 Jun;29(2):357–365. doi: 10.1016/0092-8674(82)90152-0. [DOI] [PubMed] [Google Scholar]
- Ravin V., Ravin N., Casjens S., Ford M. E., Hatfull G. F., Hendrix R. W. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J Mol Biol. 2000 May 26;299(1):53–73. doi: 10.1006/jmbi.2000.3731. [DOI] [PubMed] [Google Scholar]
- Rubinchik S., Parris W., Gold M. The in vitro ATPases of bacteriophage lambda terminase and its large subunit, gene product A. The relationship with their DNA helicase and packaging activities. J Biol Chem. 1994 May 6;269(18):13586–13593. [PubMed] [Google Scholar]
- Rubinchik S., Parris W., Gold M. The in vitro endonuclease activity of gene product A, the large subunit of the bacteriophage lambda terminase, and its relationship to the endonuclease activity of the holoenzyme. J Biol Chem. 1994 May 6;269(18):13575–13585. [PubMed] [Google Scholar]
- Sanger F., Coulson A. R., Hong G. F., Hill D. F., Petersen G. B. Nucleotide sequence of bacteriophage lambda DNA. J Mol Biol. 1982 Dec 25;162(4):729–773. doi: 10.1016/0022-2836(82)90546-0. [DOI] [PubMed] [Google Scholar]
- Shinder G., Gold M. The Nul subunit of bacteriophage lambda terminase binds to specific sites in cos DNA. J Virol. 1988 Feb;62(2):387–392. doi: 10.1128/jvi.62.2.387-392.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sippy J., Feiss M. Analysis of a mutation affecting the specificity domain for prohead binding of the bacteriophage lambda terminase. J Bacteriol. 1992 Feb;174(3):850–856. doi: 10.1128/jb.174.3.850-856.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Six E. W., Klug C. A. Bacteriophage P4: a satellite virus depending on a helper such as prophage P2. Virology. 1973 Feb;51(2):327–344. doi: 10.1016/0042-6822(73)90432-7. [DOI] [PubMed] [Google Scholar]
- Smith M. P., Feiss M. Sites and gene products involved in lambdoid phage DNA packaging. J Bacteriol. 1993 Apr;175(8):2393–2399. doi: 10.1128/jb.175.8.2393-2399.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternberg N., Austin S. Isolation and characterization of P1 minireplicons, lambda-P1:5R and lambda-P1:5L. J Bacteriol. 1983 Feb;153(2):800–812. doi: 10.1128/jb.153.2.800-812.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu W. F., Christiansen S., Feiss M. Domains for protein-protein interactions at the N and C termini of the large subunit of bacteriophage lambda terminase. Genetics. 1988 Jul;119(3):477–484. doi: 10.1093/genetics/119.3.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu S. Y., Feiss M. Structure of the bacteriophage lambda cohesive end site. Genetic analysis of the site (cosN) at which nicks are introduced by terminase. J Mol Biol. 1991 Jul 20;220(2):281–292. doi: 10.1016/0022-2836(91)90013-v. [DOI] [PubMed] [Google Scholar]
- Xu S. Y., Feiss M. The last duplex base-pair of the phage lambda chromosome. Involvement in packaging, ejection and routing of lambda DNA. J Mol Biol. 1991 Jul 20;220(2):293–306. doi: 10.1016/0022-2836(91)90014-w. [DOI] [PubMed] [Google Scholar]
- Yeo A., Feiss M. Mutational analysis of the prohead binding domain of the large subunit of terminase, the bacteriophage lambda DNA packaging enzyme. J Mol Biol. 1995 Jan 13;245(2):126–140. [PubMed] [Google Scholar]
- Yeo A., Feiss M. Specific interaction of terminase, the DNA packaging enzyme of bacteriophage lambda, with the portal protein of the prohead. J Mol Biol. 1995 Jan 13;245(2):141–150. doi: 10.1006/jmbi.1994.0013. [DOI] [PubMed] [Google Scholar]
- Yeo A., Kosturka L. D., Feiss M. Structure of the bacteriophage lambda cohesive end site: bent DNA on both sides of the site, cosN, at which terminase introduces nicks during chromosome maturation. Virology. 1990 Jan;174(1):329–334. doi: 10.1016/0042-6822(90)90085-6. [DOI] [PubMed] [Google Scholar]
