Skip to main content
Genetics logoLink to Genetics
. 2001 Jun;158(2):541–548. doi: 10.1093/genetics/158.2.541

RAG4 gene encodes a glucose sensor in Kluyveromyces lactis.

S Betina 1, P Goffrini 1, I Ferrero 1, M Wésolowski-Louvel 1
PMCID: PMC1461679  PMID: 11404320

Abstract

The rag4 mutant of Kluyveromyces lactis was previously isolated as a fermentation-deficient mutant, in which transcription of the major glucose transporter gene RAG1 was affected. The wild-type RAG4 was cloned by complementation of the rag4 mutation and found to encode a protein homologous to Snf3 and Rgt2 of Saccharomyces cerevisiae. These two proteins are thought to be sensors of low and high concentrations of glucose, respectively. Rag4, like Snf3 and Rgt2, is predicted to have the transmembrane structure of sugar transporter family proteins as well as a long C-terminal cytoplasmic tail possessing a characteristic 25-amino-acid sequence. Rag4 may therefore be expected to have a glucose-sensing function. However, the rag4 mutation was fully complemented by one copy of either SNF3 or RGT2. Since K. lactis appears to have no other genes of the SNF3/RGT2 type, we suggest that Rag4 of K. lactis may have a dual function of signaling high and low concentrations of glucose. In rag4 mutants, glucose repression of several inducible enzymes is abolished.

Full Text

The Full Text of this article is available as a PDF (383.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberti A., Goffrini P., Ferrero I., Lodi T. Cloning and characterization of the lactate-specific inducible gene KlCYB2, encoding the cytochrome b(2) of Kluyveromyces lactis. Yeast. 2000 May;16(7):657–665. doi: 10.1002/(SICI)1097-0061(200005)16:7<657::AID-YEA560>3.0.CO;2-%23. [DOI] [PubMed] [Google Scholar]
  2. Billard P., Ménart S., Blaisonneau J., Bolotin-Fukuhara M., Fukuhara H., Wésolowski-Louvel M. Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport. J Bacteriol. 1996 Oct;178(20):5860–5866. doi: 10.1128/jb.178.20.5860-5866.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaisonneau J., Fukuhara H., Wésolowski-Louvel M. The Kluyveromyces lactis equivalent of casein kinase I is required for the transcription of the gene encoding the low-affinity glucose permease. Mol Gen Genet. 1997 Jan 27;253(4):469–477. doi: 10.1007/s004380050345. [DOI] [PubMed] [Google Scholar]
  4. Breunig K. D. Glucose repression of LAC gene expression in yeast is mediated by the transcriptional activator LAC9. Mol Gen Genet. 1989 Apr;216(2-3):422–427. doi: 10.1007/BF00334386. [DOI] [PubMed] [Google Scholar]
  5. Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero I, I, Frontali L, Goffrini P, Krijger JJ, Mazzoni C. Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme Microb Technol. 2000 Jun 1;26(9-10):771–780. doi: 10.1016/s0141-0229(00)00170-8. [DOI] [PubMed] [Google Scholar]
  6. COHN M., MONOD J. Purification et proprietes de la beta-galactosidase (lactase) d'Escherichia coli. Biochim Biophys Acta. 1951 May;7(1):153–174. doi: 10.1016/0006-3002(51)90013-3. [DOI] [PubMed] [Google Scholar]
  7. Chen X. J. Low- and high-copy-number shuttle vectors for replication in the budding yeast Kluyveromyces lactis. Gene. 1996 Jun 12;172(1):131–136. doi: 10.1016/0378-1119(96)00125-4. [DOI] [PubMed] [Google Scholar]
  8. Chen X. J., Wésolowski-Louvel M., Fukuhara H. Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1. Mol Gen Genet. 1992 May;233(1-2):97–105. doi: 10.1007/BF00587566. [DOI] [PubMed] [Google Scholar]
  9. Coons D. M., Vagnoli P., Bisson L. F. The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutations in Saccharomyces cerevisiae: SNF3 functions in glucose recognition. Yeast. 1997 Jan;13(1):9–20. doi: 10.1002/(SICI)1097-0061(199701)13:1<9::AID-YEA51>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  10. Dickson R. C., Sheetz R. M., Lacy L. R. Genetic regulation: yeast mutants constitutive for beta-galactosidase activity have an increased level of beta-galactosidase messenger ribonucleic acid. Mol Cell Biol. 1981 Nov;1(11):1048–1056. doi: 10.1128/mcb.1.11.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dohmen R. J., Strasser A. W., Höner C. B., Hollenberg C. P. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast. 1991 Oct;7(7):691–692. doi: 10.1002/yea.320070704. [DOI] [PubMed] [Google Scholar]
  12. Ferrero I., Rossi C., Landini M. P., Puglisi P. P. Role of the mitochondrial protein synthesis is the catabolite repression of the petite-negative yeast K.lactis. Biochem Biophys Res Commun. 1978 Jan 30;80(2):340–348. doi: 10.1016/0006-291x(78)90682-4. [DOI] [PubMed] [Google Scholar]
  13. Goffrini P., Algeri A. A., Donnini C., Wesolowski-Louvel M., Ferrero I. RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for growth on sugars. Yeast. 1989 Mar-Apr;5(2):99–106. doi: 10.1002/yea.320050205. [DOI] [PubMed] [Google Scholar]
  14. Liang H., Gaber R. F. A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Mol Biol Cell. 1996 Dec;7(12):1953–1966. doi: 10.1091/mbc.7.12.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lodi T., O'Connor D., Goffrini P., Ferrero I. Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KIDLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Mol Gen Genet. 1994 Sep 28;244(6):622–629. doi: 10.1007/BF00282752. [DOI] [PubMed] [Google Scholar]
  16. Marshall-Carlson L., Celenza J. L., Laurent B. C., Carlson M. Mutational analysis of the SNF3 glucose transporter of Saccharomyces cerevisiae. Mol Cell Biol. 1990 Mar;10(3):1105–1115. doi: 10.1128/mcb.10.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meijer M. M., Boonstra J., Verkleij A. J., Verrips C. T. Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J Biol Chem. 1998 Sep 11;273(37):24102–24107. doi: 10.1074/jbc.273.37.24102. [DOI] [PubMed] [Google Scholar]
  18. Neigeborn L., Schwartzberg P., Reid R., Carlson M. Null mutations in the SNF3 gene of Saccharomyces cerevisiae cause a different phenotype than do previously isolated missense mutations. Mol Cell Biol. 1986 Nov;6(11):3569–3574. doi: 10.1128/mcb.6.11.3569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ozcan S., Dover J., Rosenwald A. G., Wölfl S., Johnston M. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12428–12432. doi: 10.1073/pnas.93.22.12428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prior C., Mamessier P., Fukuhara H., Chen X. J., Wesolowski-Louvel M. The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol Cell Biol. 1993 Jul;13(7):3882–3889. doi: 10.1128/mcb.13.7.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Salmeron J. M., Jr, Johnston S. A. Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from, the Saccharomyces cerevisiae GAL4 gene. Nucleic Acids Res. 1986 Oct 10;14(19):7767–7781. doi: 10.1093/nar/14.19.7767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schmidt M. C., McCartney R. R., Zhang X., Tillman T. S., Solimeo H., Wölfl S., Almonte C., Watkins S. C. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Jul;19(7):4561–4571. doi: 10.1128/mcb.19.7.4561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thierry A., Fairhead C., Dujon B. The complete sequence of the 8.2 kb segment left of MAT on chromosome III reveals five ORFs, including a gene for a yeast ribokinase. Yeast. 1990 Nov-Dec;6(6):521–534. doi: 10.1002/yea.320060609. [DOI] [PubMed] [Google Scholar]
  24. Vagnoli P., Coons D. M., Bisson L. F. The C-terminal domain of Snf3p mediates glucose-responsive signal transduction in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1998 Mar 1;160(1):31–36. doi: 10.1111/j.1574-6968.1998.tb12886.x. [DOI] [PubMed] [Google Scholar]
  25. Weirich J., Goffrini P., Kuger P., Ferrero I., Breunig K. D. Influence of mutations in hexose-transporter genes on glucose repression in Kluyveromyces lactis. Eur J Biochem. 1997 Oct 1;249(1):248–257. doi: 10.1111/j.1432-1033.1997.t01-1-00248.x. [DOI] [PubMed] [Google Scholar]
  26. Ye L., Kruckeberg A. L., Berden J. A., van Dam K. Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter. J Bacteriol. 1999 Aug;181(15):4673–4675. doi: 10.1128/jb.181.15.4673-4675.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zenke F. T., Zachariae W., Lunkes A., Breunig K. D. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon. Mol Cell Biol. 1993 Dec;13(12):7566–7576. doi: 10.1128/mcb.13.12.7566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zimmermann F. K., Kaufmann I., Rasenberger H., Haubetamann P. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process. Mol Gen Genet. 1977 Feb 28;151(1):95–103. doi: 10.1007/BF00446918. [DOI] [PubMed] [Google Scholar]
  29. Zimmermann F. K., Scheel I. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Mol Gen Genet. 1977 Jul 7;154(1):75–82. doi: 10.1007/BF00265579. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES