Skip to main content
Genetics logoLink to Genetics
. 2001 Jun;158(2):769–777. doi: 10.1093/genetics/158.2.769

An ancient retrovirus-like element contains hot spots for SINE insertion.

M A Cantrell 1, B J Filanoski 1, A R Ingermann 1, K Olsson 1, N DiLuglio 1, Z Lister 1, H A Wichman 1
PMCID: PMC1461688  PMID: 11404340

Abstract

Vertebrate retrotransposons have been used extensively for phylogenetic analyses and studies of molecular evolution. Information can be obtained from specific inserts either by comparing sequence differences that have accumulated over time in orthologous copies of that insert or by determining the presence or absence of that specific element at a particular site. The presence of specific copies has been deemed to be an essentially homoplasy-free phylogenetic character because the probability of multiple independent insertions into any one site has been believed to be nil. Mys elements are a type of LTR-containing retrotransposon present in Sigmodontine rodents. In this study we have shown that one particular insert, mys-9, is an extremely old insert present in multiple species of the genus Peromyscus. We have found that different copies of this insert show a surprising range of sizes, due primarily to a continuing series of SINE (short interspersed element) insertions into this locus. We have identified two hot spots for SINE insertion within mys-9 and at each hot spot have found that two independent SINE insertions have occurred at identical sites. These results have major repercussions for phylogenetic analyses based on SINE insertions, indicating the need for caution when one concludes that the existence of a SINE at a specific locus in multiple individuals is indicative of common ancestry. Although independent insertions at the same locus may be rare, SINE insertions are not homoplasy-free phylogenetic markers.

Full Text

The Full Text of this article is available as a PDF (217.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batzer M. A., Deininger P. L. A human-specific subfamily of Alu sequences. Genomics. 1991 Mar;9(3):481–487. doi: 10.1016/0888-7543(91)90414-a. [DOI] [PubMed] [Google Scholar]
  2. Batzer M. A., Stoneking M., Alegria-Hartman M., Bazan H., Kass D. H., Shaikh T. H., Novick G. E., Ioannou P. A., Scheer W. D., Herrera R. J. African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12288–12292. doi: 10.1073/pnas.91.25.12288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burton F. H., Loeb D. D., Edgell M. H., Hutchison C. A., 3rd L1 gene conversion or same-site transposition. Mol Biol Evol. 1991 Sep;8(5):609–619. doi: 10.1093/oxfordjournals.molbev.a040671. [DOI] [PubMed] [Google Scholar]
  4. Casavant N. C., Sherman A. N., Wichman H. A. Two persistent LINE-1 lineages in Peromyscus have unequal rates of evolution. Genetics. 1996 Apr;142(4):1289–1298. doi: 10.1093/genetics/142.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craig N. L. Target site selection in transposition. Annu Rev Biochem. 1997;66:437–474. doi: 10.1146/annurev.biochem.66.1.437. [DOI] [PubMed] [Google Scholar]
  6. Esnault C., Maestre J., Heidmann T. Human LINE retrotransposons generate processed pseudogenes. Nat Genet. 2000 Apr;24(4):363–367. doi: 10.1038/74184. [DOI] [PubMed] [Google Scholar]
  7. Feng Q., Moran J. V., Kazazian H. H., Jr, Boeke J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. 1996 Nov 29;87(5):905–916. doi: 10.1016/s0092-8674(00)81997-2. [DOI] [PubMed] [Google Scholar]
  8. Furano A. V., Somerville C. C., Tsichlis P. N., D'Ambrosio E. Target sites for the transposition of rat long interspersed repeated DNA elements (LINEs) are not random. Nucleic Acids Res. 1986 May 12;14(9):3717–3727. doi: 10.1093/nar/14.9.3717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Furano A. V. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog Nucleic Acid Res Mol Biol. 2000;64:255–294. doi: 10.1016/s0079-6603(00)64007-2. [DOI] [PubMed] [Google Scholar]
  10. Hamada M., Takasaki N., Reist J. D., DeCicco A. L., Goto A., Okada N. Detection of the ongoing sorting of ancestrally polymorphic SINEs toward fixation or loss in populations of two species of charr during speciation. Genetics. 1998 Sep;150(1):301–311. doi: 10.1093/genetics/150.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
  12. Hillis D. M. SINEs of the perfect character. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):9979–9981. doi: 10.1073/pnas.96.18.9979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jurka J., Klonowski P. Integration of retroposable elements in mammals: selection of target sites. J Mol Evol. 1996 Dec;43(6):685–689. doi: 10.1007/BF02202117. [DOI] [PubMed] [Google Scholar]
  14. Jurka J., Klonowski P., Trifonov E. N. Mammalian retroposons integrate at kinkable DNA sites. J Biomol Struct Dyn. 1998 Feb;15(4):717–721. doi: 10.1080/07391102.1998.10508987. [DOI] [PubMed] [Google Scholar]
  15. Jurka J. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1872–1877. doi: 10.1073/pnas.94.5.1872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kass D. H., Raynor M. E., Williams T. M. Evolutionary history of B1 retroposons in the genus Mus. J Mol Evol. 2000 Sep;51(3):256–264. doi: 10.1007/s002390010087. [DOI] [PubMed] [Google Scholar]
  17. Longmire J. L., Lewis A. K., Brown N. C., Buckingham J. M., Clark L. M., Jones M. D., Meincke L. J., Meyne J., Ratliff R. L., Ray F. A. Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae. Genomics. 1988 Jan;2(1):14–24. doi: 10.1016/0888-7543(88)90104-8. [DOI] [PubMed] [Google Scholar]
  18. Murata S., Takasaki N., Saitoh M., Okada N. Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6995–6999. doi: 10.1073/pnas.90.15.6995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nikaido M., Rooney A. P., Okada N. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10261–10266. doi: 10.1073/pnas.96.18.10261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pryciak P. M., Varmus H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell. 1992 May 29;69(5):769–780. doi: 10.1016/0092-8674(92)90289-o. [DOI] [PubMed] [Google Scholar]
  21. Qin Z. H., Schuller I., Richter G., Diamantstein T., Blankenstein T. The interleukin-6 gene locus seems to be a preferred target site for retrotransposon integration. Immunogenetics. 1991;33(4):260–266. doi: 10.1007/BF00230504. [DOI] [PubMed] [Google Scholar]
  22. Sandmeyer S. B., Hansen L. J., Chalker D. L. Integration specificity of retrotransposons and retroviruses. Annu Rev Genet. 1990;24:491–518. doi: 10.1146/annurev.ge.24.120190.002423. [DOI] [PubMed] [Google Scholar]
  23. Sawby R., Wichman H. A. Analysis of orthologous retrovirus-like elements in the white-footed mouse, Peromyscus leucopus. J Mol Evol. 1997 Jan;44(1):74–80. doi: 10.1007/pl00006123. [DOI] [PubMed] [Google Scholar]
  24. Shimamura M., Yasue H., Ohshima K., Abe H., Kato H., Kishiro T., Goto M., Munechika I., Okada N. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature. 1997 Aug 14;388(6643):666–670. doi: 10.1038/41759. [DOI] [PubMed] [Google Scholar]
  25. Slattery J. P., Murphy W. J., O'Brien S. J. Patterns of diversity among SINE elements isolated from three Y-chromosome genes in carnivores. Mol Biol Evol. 2000 May;17(5):825–829. doi: 10.1093/oxfordjournals.molbev.a026361. [DOI] [PubMed] [Google Scholar]
  26. Sullivan J., Markert J. A., Kilpatrick C. W. Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Syst Biol. 1997 Sep;46(3):426–440. doi: 10.1093/sysbio/46.3.426. [DOI] [PubMed] [Google Scholar]
  27. Takahashi K., Terai Y., Nishida M., Okada N. A novel family of short interspersed repetitive elements (SINEs) from cichlids: the patterns of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika. Mol Biol Evol. 1998 Apr;15(4):391–407. doi: 10.1093/oxfordjournals.molbev.a025936. [DOI] [PubMed] [Google Scholar]
  28. Wells D., Bains W. Characterization of an unusual human histone H3.3 pseudogene. DNA Seq. 1991;2(2):125–127. doi: 10.3109/10425179109039681. [DOI] [PubMed] [Google Scholar]
  29. Wichman H. A., Potter S. S., Pine D. S. Mys, a family of mammalian transposable elements isolated by phylogenetic screening. Nature. 1985 Sep 5;317(6032):77–81. doi: 10.1038/317077a0. [DOI] [PubMed] [Google Scholar]
  30. Wichman H. A., Van den Bussche R. A., Hamilton M. J., Baker R. J. Transposable elements and the evolution of genome organization in mammals. Genetica. 1992;86(1-3):287–293. doi: 10.1007/BF00133727. [DOI] [PubMed] [Google Scholar]
  31. Xiong Y., Eickbush T. H. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol Cell Biol. 1988 Jan;8(1):114–123. doi: 10.1128/mcb.8.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES