Abstract
Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent structures of each type catalyzed by the respective monoterpene (C(10)), sesquiterpene (C(15)), and diterpene synthases (C(20)). Over 30 cDNAs encoding plant terpenoid synthases involved in primary and secondary metabolism have been cloned and characterized. Here we describe the isolation and analysis of six genomic clones encoding terpene synthases of conifers, [(-)-pinene (C(10)), (-)-limonene (C(10)), (E)-alpha-bisabolene (C(15)), delta-selinene (C(15)), and abietadiene synthase (C(20)) from Abies grandis and taxadiene synthase (C(20)) from Taxus brevifolia], all of which are involved in natural products biosynthesis. Genome organization (intron number, size, placement and phase, and exon size) of these gymnosperm terpene synthases was compared to eight previously characterized angiosperm terpene synthase genes and to six putative terpene synthase genomic sequences from Arabidopsis thaliana. Three distinct classes of terpene synthase genes were discerned, from which assumed patterns of sequential intron loss and the loss of an unusual internal sequence element suggest that the ancestral terpenoid synthase gene resembled a contemporary conifer diterpene synthase gene in containing at least 12 introns and 13 exons of conserved size. A model presented for the evolutionary history of plant terpene synthases suggests that this superfamily of genes responsible for natural products biosynthesis derived from terpene synthase genes involved in primary metabolism by duplication and divergence in structural and functional specialization. This novel molecular evolutionary approach focused on genes of secondary metabolism may have broad implications for the origins of natural products and for plant phylogenetics in general.
Full Text
The Full Text of this article is available as a PDF (858.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Back K., Chappell J. Cloning and bacterial expression of a sesquiterpene cyclase from Hyoscyamus muticus and its molecular comparison to related terpene cyclases. J Biol Chem. 1995 Mar 31;270(13):7375–7381. doi: 10.1074/jbc.270.13.7375. [DOI] [PubMed] [Google Scholar]
- Baltimore D. Retroviruses and retrotransposons: the role of reverse transcription in shaping the eukaryotic genome. Cell. 1985 Mar;40(3):481–482. doi: 10.1016/0092-8674(85)90190-4. [DOI] [PubMed] [Google Scholar]
- Bharathan G., Janssen B. J., Kellogg E. A., Sinha N. Phylogenetic relationships and evolution of the KNOTTED class of plant homeodomain proteins. Mol Biol Evol. 1999 Apr;16(4):553–563. doi: 10.1093/oxfordjournals.molbev.a026136. [DOI] [PubMed] [Google Scholar]
- Bohlmann J., Crock J., Jetter R., Croteau R. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6756–6761. doi: 10.1073/pnas.95.12.6756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohlmann J., Martin D., Oldham N. J., Gershenzon J. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase. Arch Biochem Biophys. 2000 Mar 15;375(2):261–269. doi: 10.1006/abbi.1999.1669. [DOI] [PubMed] [Google Scholar]
- Bohlmann J., Meyer-Gauen G., Croteau R. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4126–4133. doi: 10.1073/pnas.95.8.4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohlmann J., Phillips M., Ramachandiran V., Katoh S., Croteau R. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch Biochem Biophys. 1999 Aug 15;368(2):232–243. doi: 10.1006/abbi.1999.1332. [DOI] [PubMed] [Google Scholar]
- Bohlmann J., Steele C. L., Croteau R. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase. J Biol Chem. 1997 Aug 29;272(35):21784–21792. doi: 10.1074/jbc.272.35.21784. [DOI] [PubMed] [Google Scholar]
- Chen X. Y., Wang M., Chen Y., Davisson V. J., Heinstein P. Cloning and heterologous expression of a second (+)-delta-cadinene synthase from Gossypium arboreum. J Nat Prod. 1996 Oct;59(10):944–951. doi: 10.1021/np960344w. [DOI] [PubMed] [Google Scholar]
- Clegg M. T., Cummings M. P., Durbin M. L. The evolution of plant nuclear genes. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7791–7798. doi: 10.1073/pnas.94.15.7791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colby S. M., Alonso W. R., Katahira E. J., McGarvey D. J., Croteau R. 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem. 1993 Nov 5;268(31):23016–23024. [PubMed] [Google Scholar]
- Crowell P. L., Gould M. N. Chemoprevention and therapy of cancer by d-limonene. Crit Rev Oncog. 1994;5(1):1–22. doi: 10.1615/critrevoncog.v5.i1.10. [DOI] [PubMed] [Google Scholar]
- Cseke L., Dudareva N., Pichersky E. Structure and evolution of linalool synthase. Mol Biol Evol. 1998 Nov;15(11):1491–1498. doi: 10.1093/oxfordjournals.molbev.a025876. [DOI] [PubMed] [Google Scholar]
- Derr L. K., Strathern J. N., Garfinkel D. J. RNA-mediated recombination in S. cerevisiae. Cell. 1991 Oct 18;67(2):355–364. doi: 10.1016/0092-8674(91)90187-4. [DOI] [PubMed] [Google Scholar]
- Don R. H., Cox P. T., Wainwright B. J., Baker K., Mattick J. S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991 Jul 25;19(14):4008–4008. doi: 10.1093/nar/19.14.4008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenreich W., Schwarz M., Cartayrade A., Arigoni D., Zenk M. H., Bacher A. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol. 1998 Sep;5(9):R221–R233. doi: 10.1016/s1074-5521(98)90002-3. [DOI] [PubMed] [Google Scholar]
- Facchini P. J., Chappell J. Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11088–11092. doi: 10.1073/pnas.89.22.11088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frugoli J. A., McPeek M. A., Thomas T. L., McClung C. R. Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics. 1998 May;149(1):355–365. doi: 10.1093/genetics/149.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fryxell K. J. The coevolution of gene family trees. Trends Genet. 1996 Sep;12(9):364–369. doi: 10.1016/s0168-9525(96)80020-5. [DOI] [PubMed] [Google Scholar]
- Hanley B. A., Schuler M. A. Plant intron sequences: evidence for distinct groups of introns. Nucleic Acids Res. 1988 Jul 25;16(14B):7159–7176. doi: 10.1093/nar/16.14.7159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hohn T. M., Beremand P. D. Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene. 1989 Jun 30;79(1):131–138. doi: 10.1016/0378-1119(89)90098-x. [DOI] [PubMed] [Google Scholar]
- Huang N., Sutliff T. D., Litts J. C., Rodriguez R. L. Classification and characterization of the rice alpha-amylase multigene family. Plant Mol Biol. 1990 May;14(5):655–668. doi: 10.1007/BF00016499. [DOI] [PubMed] [Google Scholar]
- Häger K. P., Müller B., Wind C., Erbach S., Fischer H. Evolution of legumin genes: loss of an ancestral intron at the beginning of angiosperm diversification. FEBS Lett. 1996 May 27;387(1):94–98. doi: 10.1016/0014-5793(96)00477-2. [DOI] [PubMed] [Google Scholar]
- Koepp A. E., Hezari M., Zajicek J., Vogel B. S., LaFever R. E., Lewis N. G., Croteau R. Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of taxol biosynthesis in Pacific yew. J Biol Chem. 1995 Apr 14;270(15):8686–8690. doi: 10.1074/jbc.270.15.8686. [DOI] [PubMed] [Google Scholar]
- Lesburg C. A., Zhai G., Cane D. E., Christianson D. W. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science. 1997 Sep 19;277(5333):1820–1824. doi: 10.1126/science.277.5333.1820. [DOI] [PubMed] [Google Scholar]
- Matthews C. M., Trotman C. N. Ancient and recent intron stability in the Artemia hemoglobin gene. J Mol Evol. 1998 Dec;47(6):763–771. doi: 10.1007/pl00006435. [DOI] [PubMed] [Google Scholar]
- Mau C. J., West C. A. Cloning of casbene synthase cDNA: evidence for conserved structural features among terpenoid cyclases in plants. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8497–8501. doi: 10.1073/pnas.91.18.8497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman J. D., Chappell J. Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol. 1999;34(2):95–106. doi: 10.1080/10409239991209228. [DOI] [PubMed] [Google Scholar]
- Ogura Kyozo, Koyama Tanetoshi. Enzymatic Aspects of Isoprenoid Chain Elongation. Chem Rev. 1998 Jun 18;98(4):1263–1276. doi: 10.1021/cr9600464. [DOI] [PubMed] [Google Scholar]
- Ramos-Valdivia A. C., van der Heijden R., Verpoorte R. Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Nat Prod Rep. 1997 Dec;14(6):591–603. doi: 10.1039/np9971400591. [DOI] [PubMed] [Google Scholar]
- Starks C. M., Back K., Chappell J., Noel J. P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science. 1997 Sep 19;277(5333):1815–1820. doi: 10.1126/science.277.5333.1815. [DOI] [PubMed] [Google Scholar]
- Steele C. L., Crock J., Bohlmann J., Croteau R. Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem. 1998 Jan 23;273(4):2078–2089. doi: 10.1074/jbc.273.4.2078. [DOI] [PubMed] [Google Scholar]
- Sun T. P., Kamiya Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell. 1994 Oct;6(10):1509–1518. doi: 10.1105/tpc.6.10.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun Tp., Goodman H. M., Ausubel F. M. Cloning the Arabidopsis GA1 Locus by Genomic Subtraction. Plant Cell. 1992 Feb;4(2):119–128. doi: 10.1105/tpc.4.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trapp S. C., Hohn T. M., McCormick S., Jarvis B. B. Characterization of the gene cluster for biosynthesis of macrocyclic trichothecenes in Myrothecium roridum. Mol Gen Genet. 1998 Feb;257(4):421–432. doi: 10.1007/s004380050666. [DOI] [PubMed] [Google Scholar]
- Van Geldre E., Vergauwe A., Van den Eeckhout E. State of the art of the production of the antimalarial compound artemisinin in plants. Plant Mol Biol. 1997 Jan;33(2):199–209. doi: 10.1023/a:1005716600612. [DOI] [PubMed] [Google Scholar]
- Vogel B. S., Wildung M. R., Vogel G., Croteau R. Abietadiene synthase from grand fir (Abies grandis). cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. J Biol Chem. 1996 Sep 20;271(38):23262–23268. doi: 10.1074/jbc.271.38.23262. [DOI] [PubMed] [Google Scholar]
- Waters E. R., Vierling E. The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol. 1999 Jan;16(1):127–139. doi: 10.1093/oxfordjournals.molbev.a026033. [DOI] [PubMed] [Google Scholar]
- Wendt K. U., Poralla K., Schulz G. E. Structure and function of a squalene cyclase. Science. 1997 Sep 19;277(5333):1811–1815. doi: 10.1126/science.277.5333.1811. [DOI] [PubMed] [Google Scholar]
- Wildung M. R., Croteau R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem. 1996 Apr 19;271(16):9201–9204. doi: 10.1074/jbc.271.16.9201. [DOI] [PubMed] [Google Scholar]
- Williams D. C., McGarvey D. J., Katahira E. J., Croteau R. Truncation of limonene synthase preprotein provides a fully active 'pseudomature' form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry. 1998 Sep 1;37(35):12213–12220. doi: 10.1021/bi980854k. [DOI] [PubMed] [Google Scholar]
- Williams D. H., Stone M. J., Hauck P. R., Rahman S. K. Why are secondary metabolites (natural products) biosynthesized? J Nat Prod. 1989 Nov-Dec;52(6):1189–1208. doi: 10.1021/np50066a001. [DOI] [PubMed] [Google Scholar]
- Yamaguchi S., Sun T. p., Kawaide H., Kamiya Y. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol. 1998 Apr;116(4):1271–1278. doi: 10.1104/pp.116.4.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuba A., Yazaki K., Tabata M., Honda G., Croteau R. cDNA cloning, characterization, and functional expression of 4S-(-)-limonene synthase from Perilla frutescens. Arch Biochem Biophys. 1996 Aug 15;332(2):280–287. doi: 10.1006/abbi.1996.0343. [DOI] [PubMed] [Google Scholar]