Skip to main content
Genetics logoLink to Genetics
. 2001 Jul;158(3):1089–1100. doi: 10.1093/genetics/158.3.1089

Complex epistasis and the genetic basis of hybrid sterility in the Drosophila pseudoobscura Bogota-USA hybridization.

H A Orr 1, S Irving 1
PMCID: PMC1461699  PMID: 11454758

Abstract

We analyzed the genetic basis of postzygotic isolation between the Bogota and USA subspecies of Drosophila pseudoobscura. These subspecies diverged very recently (perhaps as recently as 155,000 to 230,000 years ago) and are partially reproductively isolated: Bogota and USA show very little prezygotic isolation but form sterile F1 males in one direction of the hybridization. We dissected the basis of this hybrid sterility and reached four main conclusions. First, postzygotic isolation appears to involve a modest number of genes: we found large chromosome regions that have no effect on hybrid fertility. Second, although apparently few in number, the factors causing hybrid sterility show a remarkably complex pattern of epistatic interaction. Hybrids suffer no hybrid sterility until they carry the "right" allele (Bogota vs. USA) at at least four loci. We describe the complete pattern of interactions between all chromosome regions known to affect hybrid fertility. Third, hybrid sterility is caused mainly by X-autosomal incompatibilities. Fourth, hybrid sterility does not involve a maternal effect, despite earlier claims to the contrary. In general, our results suggest that fewer genes are required for the appearance of hybrid sterility than implied by previous studies of older pairs of Drosophila species. Indeed, a maximum likelihood analysis suggests that roughly 15 hybrid male steriles separate the Bogota and USA subspecies. Only a subset of these would act in F1 hybrids.

Full Text

The Full Text of this article is available as a PDF (124.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbash D. A., Roote J., Ashburner M. The Drosophila melanogaster hybrid male rescue gene causes inviability in male and female species hybrids. Genetics. 2000 Apr;154(4):1747–1771. doi: 10.1093/genetics/154.4.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cabot E. L., Davis A. W., Johnson N. A., Wu C. I. Genetics of reproductive isolation in the Drosophila simulans clade: complex epistasis underlying hybrid male sterility. Genetics. 1994 May;137(1):175–189. doi: 10.1093/genetics/137.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coyne J. A., Charlesworth B. Genetic analysis of X-linked sterility in hybrids between three sibling species of Drosophila. Heredity (Edinb) 1989 Feb;62(Pt 1):97–106. doi: 10.1038/hdy.1989.13. [DOI] [PubMed] [Google Scholar]
  4. Coyne J. A. Genetic basis of male sterility in hybrids between two closely related species of Drosophila. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4444–4447. doi: 10.1073/pnas.81.14.4444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coyne J. A. The genetic basis of Haldane's rule. 1985 Apr 25-May 1Nature. 314(6013):736–738. doi: 10.1038/314736a0. [DOI] [PubMed] [Google Scholar]
  6. Davis A. W., Noonburg E. G., Wu C. I. Evidence for complex genic interactions between conspecific chromosomes underlying hybrid female sterility in the Drosophila simulans clade. Genetics. 1994 May;137(1):191–199. doi: 10.1093/genetics/137.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis A. W., Roote J., Morley T., Sawamura K., Herrmann S., Ashburner M. Rescue of hybrid sterility in crosses between D. melanogaster and D. simulans. Nature. 1996 Mar 14;380(6570):157–159. doi: 10.1038/380157a0. [DOI] [PubMed] [Google Scholar]
  8. Davis A. W., Wu C. I. The broom of the sorcerer's apprentice: the fine structure of a chromosomal region causing reproductive isolation between two sibling species of Drosophila. Genetics. 1996 Jul;143(3):1287–1298. doi: 10.1093/genetics/143.3.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dobzhansky T. Genetic analysis of hybrid sterility within the species Drosophila pseudoobscura. Hereditas. 1974;77(1):81–88. doi: 10.1111/j.1601-5223.1974.tb01356.x. [DOI] [PubMed] [Google Scholar]
  10. Dobzhansky T. Studies on Hybrid Sterility. II. Localization of Sterility Factors in Drosophila Pseudoobscura Hybrids. Genetics. 1936 Mar;21(2):113–135. doi: 10.1093/genetics/21.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffmann A. A., Turelli M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics. 1988 Jun;119(2):435–444. doi: 10.1093/genetics/119.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hollocher H., Wu C. I. The genetics of reproductive isolation in the Drosophila simulans clade: X vs. autosomal effects and male vs. female effects. Genetics. 1996 Jul;143(3):1243–1255. doi: 10.1093/genetics/143.3.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hutter P., Roote J., Ashburner M. A genetic basis for the inviability of hybrids between sibling species of Drosophila. Genetics. 1990 Apr;124(4):909–920. doi: 10.1093/genetics/124.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laurie C. C. The weaker sex is heterogametic: 75 years of Haldane's rule. Genetics. 1997 Nov;147(3):937–951. doi: 10.1093/genetics/147.3.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Naveira H., Fontdevila A. The Evolutionary History of DROSOPHILA BUZZATII. Xii. the Genetic Basis of Sterility in Hybrids between D. BUZZATII and Its Sibling D. SERIDO from Argentina. Genetics. 1986 Nov;114(3):841–857. doi: 10.1093/genetics/114.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Noor M. A. Reinforcement and other consequences of sympatry. Heredity (Edinb) 1999 Nov;83(Pt 5):503–508. doi: 10.1038/sj.hdy.6886320. [DOI] [PubMed] [Google Scholar]
  17. Orr H. A., Coyne J. A. The genetics of postzygotic isolation in the Drosophila virilis group. Genetics. 1989 Mar;121(3):527–537. doi: 10.1093/genetics/121.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orr H. A. Does hybrid lethality depend on sex or genotype? Genetics. 1999 Aug;152(4):1767–1769. doi: 10.1093/genetics/152.4.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Orr H. A. Genetics of male and female sterility in hybrids of Drosophila pseudoobscura and D. persimilis. Genetics. 1987 Aug;116(4):555–563. doi: 10.1093/genetics/116.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Orr H. A., Irving S. Genetic analysis of the hybrid male rescue locus of Drosophila. Genetics. 2000 May;155(1):225–231. doi: 10.1093/genetics/155.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Orr H. A. Localization of genes causing postzygotic isolation in two hybridizations involving Drosophila pseudoobscura. Heredity (Edinb) 1989 Oct;63(Pt 2):231–237. doi: 10.1038/hdy.1989.96. [DOI] [PubMed] [Google Scholar]
  22. Orr H. A. Mapping and characterization of a 'speciation gene' in Drosophila. Genet Res. 1992 Apr;59(2):73–80. doi: 10.1017/s0016672300030275. [DOI] [PubMed] [Google Scholar]
  23. Orr H. A., Presgraves D. C. Speciation by postzygotic isolation: forces, genes and molecules. Bioessays. 2000 Dec;22(12):1085–1094. doi: 10.1002/1521-1878(200012)22:12<1085::AID-BIES6>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  24. Orr H. A. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics. 1995 Apr;139(4):1805–1813. doi: 10.1093/genetics/139.4.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Palopoli M. F., Wu C. I. Genetics of hybrid male sterility between drosophila sibling species: a complex web of epistasis is revealed in interspecific studies. Genetics. 1994 Oct;138(2):329–341. doi: 10.1093/genetics/138.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Perez D. E., Wu C. I. Further characterization of the Odysseus locus of hybrid sterility in Drosophila: one gene is not enough. Genetics. 1995 May;140(1):201–206. doi: 10.1093/genetics/140.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Prakash S. Origin of reproductive isolation in the absence of apparent genic differentiation in a geographic isolate of Drosophila pseudoobscura. Genetics. 1972 Sep;72(1):143–155. doi: 10.1093/genetics/72.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rundle H. D., Nagel L., Wenrick Boughman J., Schluter D. Natural selection and parallel speciation in sympatric sticklebacks. Science. 2000 Jan 14;287(5451):306–308. doi: 10.1126/science.287.5451.306. [DOI] [PubMed] [Google Scholar]
  29. Sawamura K., Watanabe T. K., Yamamoto M. T. Hybrid lethal systems in the Drosophila melanogaster species complex. Genetica. 1993;88(2-3):175–185. doi: 10.1007/BF02424474. [DOI] [PubMed] [Google Scholar]
  30. Schaeffer S. W., Miller E. L. Nucleotide sequence analysis of Adh genes estimates the time of geographic isolation of the Bogota population of Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6097–6101. doi: 10.1073/pnas.88.14.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schemske D. W., Bradshaw H. D., Jr Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11910–11915. doi: 10.1073/pnas.96.21.11910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schliewen U. K., Tautz D., Päbo S. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature. 1994 Apr 14;368(6472):629–632. doi: 10.1038/368629a0. [DOI] [PubMed] [Google Scholar]
  33. Snook R. R., Markow T. A., Karr T. L. Functional nonequivalence of sperm in Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11222–11226. doi: 10.1073/pnas.91.23.11222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ting C. T., Tsaur S. C., Wu M. L., Wu C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science. 1998 Nov 20;282(5393):1501–1504. doi: 10.1126/science.282.5393.1501. [DOI] [PubMed] [Google Scholar]
  35. True J. R., Weir B. S., Laurie C. C. A genome-wide survey of hybrid incompatibility factors by the introgression of marked segments of Drosophila mauritiana chromosomes into Drosophila simulans. Genetics. 1996 Mar;142(3):819–837. doi: 10.1093/genetics/142.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Turelli M., Orr H. A. The dominance theory of Haldane's rule. Genetics. 1995 May;140(1):389–402. doi: 10.1093/genetics/140.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Turelli M. The causes of Haldane's rule. Science. 1998 Oct 30;282(5390):889–891. doi: 10.1126/science.282.5390.889. [DOI] [PubMed] [Google Scholar]
  38. Wang R. L., Wakeley J., Hey J. Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics. 1997 Nov;147(3):1091–1106. doi: 10.1093/genetics/147.3.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wittbrodt J., Adam D., Malitschek B., Mäueler W., Raulf F., Telling A., Robertson S. M., Schartl M. Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus. Nature. 1989 Oct 5;341(6241):415–421. doi: 10.1038/341415a0. [DOI] [PubMed] [Google Scholar]
  40. Wu C. I., Palopoli M. F. Genetics of postmating reproductive isolation in animals. Annu Rev Genet. 1994;28:283–308. doi: 10.1146/annurev.ge.28.120194.001435. [DOI] [PubMed] [Google Scholar]
  41. Zeng L. W., Singh R. S. The genetic basis of Haldane's rule and the nature of asymmetric hybrid male sterility among Drosophila simulans, Drosophila mauritiana and Drosophila sechellia. Genetics. 1993 May;134(1):251–260. doi: 10.1093/genetics/134.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES