Skip to main content
Genetics logoLink to Genetics
. 2001 Jul;158(3):1347–1362. doi: 10.1093/genetics/158.3.1347

Estimation of admixture proportions: a likelihood-based approach using Markov chain Monte Carlo.

L Chikhi 1, M W Bruford 1, M A Beaumont 1
PMCID: PMC1461710  PMID: 11454781

Abstract

When populations are separated for long periods and then brought into contact for a brief episode in part of their range, this can result in genetic admixture. To analyze this type of event we considered a simple model under which two parental populations (P1 and P2) mix and create a hybrid population (H). After that event, the three populations evolve under pure drift without exchange during T generations. We developed a new method, which allows the simultaneous estimation of the time since the admixture event (scaled by the population size t(i) = T/N(i), where N(i) is the effective population size of population i) and the contribution of one of two parental populations (which we call p1). This method takes into account drift since the admixture event, variation caused by sampling, and uncertainty in the estimation of the ancestral allele frequencies. The method is tested on simulated data sets and then applied to a human data set. We find that (i) for single-locus data, point estimates are poor indicators of the real admixture proportions even when there are many alleles; (ii) biallelic loci provide little information about the admixture proportion and the time since admixture, even for very small amounts of drift, but can be powerful when many loci are used; (iii) the precision of the parameters' estimates increases with sample size n = 50 vs. n = 200 but this effect is larger for the t(i)'s than for p1; and (iv) the increase in precision provided by multiple loci is quite large, even when there is substantial drift (we found, for instance, that it is preferable to use five loci than one locus, even when drift is 100 times larger for the five loci). Our analysis of a previously studied human data set illustrates that the joint estimation of drift and p1 can provide additional insights into the data.

Full Text

The Full Text of this article is available as a PDF (220.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaumont M. A. Detecting population expansion and decline using microsatellites. Genetics. 1999 Dec;153(4):2013–2029. doi: 10.1093/genetics/153.4.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beerli P., Felsenstein J. Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics. 1999 Jun;152(2):763–773. doi: 10.1093/genetics/152.2.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertorelle G., Excoffier L. Inferring admixture proportions from molecular data. Mol Biol Evol. 1998 Oct;15(10):1298–1311. doi: 10.1093/oxfordjournals.molbev.a025858. [DOI] [PubMed] [Google Scholar]
  4. Chakraborty R. Estimation of race admixture--a new method. Am J Phys Anthropol. 1975 May;42(3):507–511. doi: 10.1002/ajpa.1330420319. [DOI] [PubMed] [Google Scholar]
  5. Chakraborty R., Kamboh M. I., Nwankwo M., Ferrell R. E. Caucasian genes in American blacks: new data. Am J Hum Genet. 1992 Jan;50(1):145–155. [PMC free article] [PubMed] [Google Scholar]
  6. Chakraborty R., Weiss K. M. Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9119–9123. doi: 10.1073/pnas.85.23.9119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Felsenstein J. Estimating effective population size from samples of sequences: inefficiency of pairwise and segregating sites as compared to phylogenetic estimates. Genet Res. 1992 Apr;59(2):139–147. doi: 10.1017/s0016672300030354. [DOI] [PubMed] [Google Scholar]
  8. Goodman S. J., Barton N. H., Swanson G., Abernethy K., Pemberton J. M. Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics. 1999 May;152(1):355–371. doi: 10.1093/genetics/152.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000 Jun 22;405(6789):907–913. doi: 10.1038/35016000. [DOI] [PubMed] [Google Scholar]
  10. Kuhner M. K., Yamato J., Felsenstein J. Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics. 1995 Aug;140(4):1421–1430. doi: 10.1093/genetics/140.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McKeigue P. M., Carpenter J. R., Parra E. J., Shriver M. D. Estimation of admixture and detection of linkage in admixed populations by a Bayesian approach: application to African-American populations. Ann Hum Genet. 2000 Mar;64(Pt 2):171–186. doi: 10.1017/S0003480000008022. [DOI] [PubMed] [Google Scholar]
  12. doi: 10.1098/rspb.1999.0918. [DOI] [PMC free article] [Google Scholar]
  13. Parra E. J., Marcini A., Akey J., Martinson J., Batzer M. A., Cooper R., Forrester T., Allison D. B., Deka R., Ferrell R. E. Estimating African American admixture proportions by use of population-specific alleles. Am J Hum Genet. 1998 Dec;63(6):1839–1851. doi: 10.1086/302148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. ROBERTS D. F., HIORNS R. W. METHODS OF ANALYSIS OF THE GENETIC COMPOSITION OF A HYBRID POPULATION. Hum Biol. 1965 Feb;37:38–43. [PubMed] [Google Scholar]
  15. Rogers A. R., Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992 May;9(3):552–569. doi: 10.1093/oxfordjournals.molbev.a040727. [DOI] [PubMed] [Google Scholar]
  16. Slatkin M. Gene genealogies within mutant allelic classes. Genetics. 1996 May;143(1):579–587. doi: 10.1093/genetics/143.1.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Slatkin M., Hudson R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 1991 Oct;129(2):555–562. doi: 10.1093/genetics/129.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taberlet P., Fumagalli L., Wust-Saucy A. G., Cosson J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998 Apr;7(4):453–464. doi: 10.1046/j.1365-294x.1998.00289.x. [DOI] [PubMed] [Google Scholar]
  19. Tavaré S. Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol. 1984 Oct;26(2):119–164. doi: 10.1016/0040-5809(84)90027-3. [DOI] [PubMed] [Google Scholar]
  20. Thompson E. A. The Icelandic admixture problem. Ann Hum Genet. 1973 Jul;37(1):69–80. doi: 10.1111/j.1469-1809.1973.tb01815.x. [DOI] [PubMed] [Google Scholar]
  21. Wilson I. J., Balding D. J. Genealogical inference from microsatellite data. Genetics. 1998 Sep;150(1):499–510. doi: 10.1093/genetics/150.1.499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES