Skip to main content
Genetics logoLink to Genetics
. 2001 Jul;158(3):999–1011. doi: 10.1093/genetics/158.3.999

Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity.

Z Gojković 1, M P Sandrini 1, J Piskur 1
PMCID: PMC1461717  PMID: 11454750

Abstract

beta-Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamyl-beta-alanine as the sole nitrogen source and exhibits diminished beta-alanine synthase activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has no pyrimidine catabolic pathway, it enabled growth on N-carbamyl-beta-alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta-alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial N-carbamyl amidohydrolases. All three beta-alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta-alanine, but not by uracil. This work establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta-alanine production in eukaryotes.

Full Text

The Full Text of this article is available as a PDF (506.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Bader B., Knecht W., Fries M., Löffler M. Expression, purification, and characterization of histidine-tagged rat and human flavoenzyme dihydroorotate dehydrogenase. Protein Expr Purif. 1998 Aug;13(3):414–422. doi: 10.1006/prep.1998.0925. [DOI] [PubMed] [Google Scholar]
  3. Birk I. M., Dierstein R., Kaiser I., Matern U., König W. A., Krebber R., Weckesser J. Nontoxic and toxic oligopeptides with D-amino acids and unusual residues in Microcystis aeruginosa PCC 7806. Arch Microbiol. 1989;151(5):411–415. doi: 10.1007/BF00416599. [DOI] [PubMed] [Google Scholar]
  4. Björnberg O., Rowland P., Larsen S., Jensen K. F. Active site of dihydroorotate dehydrogenase A from Lactococcus lactis investigated by chemical modification and mutagenesis. Biochemistry. 1997 Dec 23;36(51):16197–16205. doi: 10.1021/bi971628y. [DOI] [PubMed] [Google Scholar]
  5. Bork P., Koonin E. V. A new family of carbon-nitrogen hydrolases. Protein Sci. 1994 Aug;3(8):1344–1346. doi: 10.1002/pro.5560030821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Bysani N., Daugherty J. R., Cooper T. G. Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J Bacteriol. 1991 Aug;173(16):4977–4982. doi: 10.1128/jb.173.16.4977-4982.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CARAVACA J., GRISOLIA S. Enzymatic decarbamylation of carbamyl beta-alanine and carbamyl beta-aminoisobutyric acid. J Biol Chem. 1958 Mar;231(1):357–365. [PubMed] [Google Scholar]
  9. Costanzo M. C., Bonnefoy N., Williams E. H., Clark-Walker G. D., Fox T. D. Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts. Genetics. 2000 Mar;154(3):999–1012. doi: 10.1093/genetics/154.3.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cronan J. E., Jr, Littel K. J., Jackowski S. Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1982 Mar;149(3):916–922. doi: 10.1128/jb.149.3.916-922.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gojkovic Z., Jahnke K., Schnackerz K. D., Piskur J. PYD2 encodes 5,6-dihydropyrimidine amidohydrolase, which participates in a novel fungal catabolic pathway. J Mol Biol. 2000 Jan 28;295(4):1073–1087. doi: 10.1006/jmbi.1999.3393. [DOI] [PubMed] [Google Scholar]
  12. Gojkovic Z., Paracchini S., Piskur J. A new model organism for studying the catabolism of pyrimidines and purines. Adv Exp Med Biol. 1998;431:475–479. doi: 10.1007/978-1-4615-5381-6_94. [DOI] [PubMed] [Google Scholar]
  13. Grifantini R., Pratesi C., Galli G., Grandi G. Topological mapping of the cysteine residues of N-carbamyl-D-amino-acid amidohydrolase and their role in enzymatic activity. J Biol Chem. 1996 Apr 19;271(16):9326–9331. doi: 10.1074/jbc.271.16.9326. [DOI] [PubMed] [Google Scholar]
  14. Hermann H., Häcker U., Bandlow W., Magdolen V. pYLZ vectors: Saccharomyces cerevisiae/Escherichia coli shuttle plasmids to analyze yeast promoters. Gene. 1992 Sep 21;119(1):137–141. doi: 10.1016/0378-1119(92)90079-5. [DOI] [PubMed] [Google Scholar]
  15. Higgins J. J., Kaneski C. R., Bernardini I., Brady R. O., Barton N. W. Pyridoxine-responsive hyper-beta-alaninemia associated with Cohen's syndrome. Neurology. 1994 Sep;44(9):1728–1732. doi: 10.1212/wnl.44.9.1728. [DOI] [PubMed] [Google Scholar]
  16. Ikenaka Y., Nanba H., Yamada Y., Yajima K., Takano M., Takahashi S. Screening, characterization, and cloning of the gene for N-carbamyl-D-amino acid amidohydrolase from thermotolerant soil bacteria. Biosci Biotechnol Biochem. 1998 May;62(5):882–886. doi: 10.1271/bbb.62.882. [DOI] [PubMed] [Google Scholar]
  17. Jacobs M. E. Beta-alanine and tanning polymorphisms. Comp Biochem Physiol B. 1982;72(2):173–177. doi: 10.1016/0305-0491(82)90032-3. [DOI] [PubMed] [Google Scholar]
  18. Jacobs M. E. Influence of beta-alanine on ultrastructure, tanning, and melanization of Drosophila melanogaster cuticles. Biochem Genet. 1980 Feb;18(1-2):65–76. doi: 10.1007/BF00504360. [DOI] [PubMed] [Google Scholar]
  19. Kobayashi M., Yanaka N., Nagasawa T., Yamada H. Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Biochemistry. 1992 Sep 22;31(37):9000–9007. doi: 10.1021/bi00152a042. [DOI] [PubMed] [Google Scholar]
  20. Kreil G. D-amino acids in animal peptides. Annu Rev Biochem. 1997;66:337–345. doi: 10.1146/annurev.biochem.66.1.337. [DOI] [PubMed] [Google Scholar]
  21. Kvalnes-Krick K. L., Traut T. W. Cloning, sequencing, and expression of a cDNA encoding beta-alanine synthase from rat liver. J Biol Chem. 1993 Mar 15;268(8):5686–5693. [PubMed] [Google Scholar]
  22. Labedan B., Boyen A., Baetens M., Charlier D., Chen P., Cunin R., Durbeco V., Glansdorff N., Herve G., Legrain C. The evolutionary history of carbamoyltransferases: A complex set of paralogous genes was already present in the last universal common ancestor. J Mol Evol. 1999 Oct;49(4):461–473. doi: 10.1007/pl00006569. [DOI] [PubMed] [Google Scholar]
  23. Matthews M. M., Liao W., Kvalnes-Krick K. L., Traut T. W. beta-Alanine synthase: purification and allosteric properties. Arch Biochem Biophys. 1992 Mar;293(2):254–263. doi: 10.1016/0003-9861(92)90393-b. [DOI] [PubMed] [Google Scholar]
  24. Matthews M. M., Traut T. W. Regulation of N-carbamoyl-beta-alanine amidohydrolase, the terminal enzyme in pyrimidine catabolism, by ligand-induced change in polymerization. J Biol Chem. 1987 May 25;262(15):7232–7237. [PubMed] [Google Scholar]
  25. Nanba H., Ikenaka Y., Yamada Y., Yajima K., Takano M., Takahashi S. Isolation of Agrobacterium sp. strain KNK712 that produces N-carbamyl-D-amino acid amidohydrolase, cloning of the gene for this enzyme, and properties of the enzyme. Biosci Biotechnol Biochem. 1998 May;62(5):875–881. doi: 10.1271/bbb.62.875. [DOI] [PubMed] [Google Scholar]
  26. Ogawa J., Shimizu S. Beta-ureidopropionase with N-carbamoyl-alpha-L-amino acid amidohydrolase activity from an aerobic bacterium, Pseudomonas putida IFO 12996. Eur J Biochem. 1994 Jul 15;223(2):625–630. doi: 10.1111/j.1432-1033.1994.tb19034.x. [DOI] [PubMed] [Google Scholar]
  27. Okeda R., Shibutani M., Matsuo T., Kuroiwa T., Shimokawa R., Tajima T. Experimental neurotoxicity of 5-fluorouracil and its derivatives is due to poisoning by the monofluorinated organic metabolites, monofluoroacetic acid and alpha-fluoro-beta-alanine. Acta Neuropathol. 1990;81(1):66–73. doi: 10.1007/BF00662639. [DOI] [PubMed] [Google Scholar]
  28. Petersen R. F., Nilsson-Tillgren T., Piskur J. Karyotypes of Saccharomyces sensu lato species. Int J Syst Bacteriol. 1999 Oct;49(Pt 4):1925–1931. doi: 10.1099/00207713-49-4-1925. [DOI] [PubMed] [Google Scholar]
  29. Rowland P., Björnberg O., Nielsen F. S., Jensen K. F., Larsen S. The crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A complexed with the enzyme reaction product throws light on its enzymatic function. Protein Sci. 1998 Jun;7(6):1269–1279. doi: 10.1002/pro.5560070601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sandberg M., Jacobson I. beta-Alanine, a possible neurotransmitter in the visual system? J Neurochem. 1981 Nov;37(5):1353–1356. doi: 10.1111/j.1471-4159.1981.tb04691.x. [DOI] [PubMed] [Google Scholar]
  31. Sanno Y., Holzer M., Schimke R. T. Studies of a mutation affecting pyrimidine degradation in inbred mice. J Biol Chem. 1970 Nov 10;245(21):5668–5676. [PubMed] [Google Scholar]
  32. Tamaki N., Mizutani N., Kikugawa M., Fujimoto S., Mizota C. Purification and properties of beta-ureidopropionase from the rat liver. Eur J Biochem. 1987 Nov 16;169(1):21–26. doi: 10.1111/j.1432-1033.1987.tb13575.x. [DOI] [PubMed] [Google Scholar]
  33. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Traut T. W., Jones M. E. Uracil metabolism--UMP synthesis from orotic acid or uridine and conversion of uracil to beta-alanine: enzymes and cDNAs. Prog Nucleic Acid Res Mol Biol. 1996;53:1–78. doi: 10.1016/s0079-6603(08)60142-7. [DOI] [PubMed] [Google Scholar]
  35. Van Kuilenburg A. B., Van Lenthe H., Van Gennip A. H. A radiochemical assay for beta-ureidopropionase using radiolabeled N-carbamyl-beta-alanine obtained via hydrolysis of [2-(14)C]5, 6-dihydrouracil. Anal Biochem. 1999 Aug 1;272(2):250–253. doi: 10.1006/abio.1999.4181. [DOI] [PubMed] [Google Scholar]
  36. Vreken P., van Kuilenburg A. B., Hamajima N., Meinsma R., van Lenthe H., Göhlich-Ratmann G., Assmann B. E., Wevers R. A., van Gennip A. H. cDNA cloning, genomic structure and chromosomal localization of the human BUP-1 gene encoding beta-ureidopropionase. Biochim Biophys Acta. 1999 Oct 28;1447(2-3):251–257. doi: 10.1016/s0167-4781(99)00182-7. [DOI] [PubMed] [Google Scholar]
  37. WALLACH D. P., GRISOLIA S. The purification and properties of hydropyrimidine hydrase. J Biol Chem. 1957 May;226(1):277–288. [PubMed] [Google Scholar]
  38. Wagner S., Castel M., Gainer H., Yarom Y. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature. 1997 Jun 5;387(6633):598–603. doi: 10.1038/42468. [DOI] [PubMed] [Google Scholar]
  39. Watabe K., Ishikawa T., Mukohara Y., Nakamura H. Cloning and sequencing of the genes involved in the conversion of 5-substituted hydantoins to the corresponding L-amino acids from the native plasmid of Pseudomonas sp. strain NS671. J Bacteriol. 1992 Feb;174(3):962–969. doi: 10.1128/jb.174.3.962-969.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. West T. P., Shanley M. S., O'Donovan G. A. Improved colorimetric procedure for quantitating N-carbamoyl-beta-alanine with minimum dihydrouracil interference. Anal Biochem. 1982 May 15;122(2):345–347. doi: 10.1016/0003-2697(82)90293-7. [DOI] [PubMed] [Google Scholar]
  41. Wilms B., Wiese A., Syldatk C., Mattes R., Altenbuchner J., Pietzsch M. Cloning, nucleotide sequence and expression of a new L-N-carbamoylase gene from Arthrobacter aurescens DSM 3747 in E. coli. J Biotechnol. 1999 Feb 19;68(2-3):101–113. doi: 10.1016/s0168-1656(98)00183-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES