Skip to main content
Genetics logoLink to Genetics
. 2001 Jul;158(3):1189–1201. doi: 10.1093/genetics/158.3.1189

Genetic analysis of the Drosophila Gs(alpha) gene.

W J Wolfgang 1, A Hoskote 1, I J Roberts 1, S Jackson 1, M Forte 1
PMCID: PMC1461724  PMID: 11454767

Abstract

One of the best understood signal transduction pathways activated by receptors containing seven transmembrane domains involves activation of heterotrimeric G-protein complexes containing Gs(alpha), the subsequent stimulation of adenylyl cyclase, production of cAMP, activation of protein kinase A (PKA), and the phosphorylation of substrates that control a wide variety of cellular responses. Here, we report the identification of "loss-of-function" mutations in the Drosophila Gs(alpha) gene (dgs). Seven mutants have been identified that are either complemented by transgenes representing the wild-type dgs gene or contain nucleotide sequence changes resulting in the production of altered Gs(alpha) protein. Examination of mutant alleles representing loss-of-Gs(alpha) function indicates that the phenotypes generated do not mimic those created by mutational elimination of PKA. These results are consistent with the conclusion reached in previous studies that activation of PKA, at least in these developmental contexts, does not depend on receptor-mediated increases in intracellular cAMP, in contrast to the predictions of models developed primarily on the basis of studies in cultured cells.

Full Text

The Full Text of this article is available as a PDF (249.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Akhter S. A., Luttrell L. M., Rockman H. A., Iaccarino G., Lefkowitz R. J., Koch W. J. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science. 1998 Apr 24;280(5363):574–577. doi: 10.1126/science.280.5363.574. [DOI] [PubMed] [Google Scholar]
  3. Berger A. J., Hart A. C., Kaplan J. M. G alphas-induced neurodegeneration in Caenorhabditis elegans. J Neurosci. 1998 Apr 15;18(8):2871–2880. doi: 10.1523/JNEUROSCI.18-08-02871.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biel M., Zong X., Hofmann F. Cyclic nucleotide gated channels. Adv Second Messenger Phosphoprotein Res. 1999;33:231–250. doi: 10.1016/s1040-7952(99)80012-3. [DOI] [PubMed] [Google Scholar]
  5. Bomsel M., Mostov K. E. Possible role of both the alpha and beta gamma subunits of the heterotrimeric G protein, Gs, in transcytosis of the polymeric immunoglobulin receptor. J Biol Chem. 1993 Dec 5;268(34):25824–25835. [PubMed] [Google Scholar]
  6. Bourne H. R., Nicoll R. Molecular machines integrate coincident synaptic signals. Cell. 1993 Jan;72 (Suppl):65–75. doi: 10.1016/s0092-8674(05)80029-7. [DOI] [PubMed] [Google Scholar]
  7. Brody T., Cravchik A. Drosophila melanogaster G protein-coupled receptors. J Cell Biol. 2000 Jul 24;150(2):F83–F88. doi: 10.1083/jcb.150.2.f83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Broillet M. C., Firestein S. Cyclic nucleotide-gated channels. Molecular mechanisms of activation. Ann N Y Acad Sci. 1999 Apr 30;868:730–740. doi: 10.1111/j.1749-6632.1999.tb11352.x. [DOI] [PubMed] [Google Scholar]
  9. Cann M. J., Levin L. R. Genetic characterization of adenylyl cyclase function. Adv Second Messenger Phosphoprotein Res. 1998;32:121–135. doi: 10.1016/s1040-7952(98)80008-6. [DOI] [PubMed] [Google Scholar]
  10. Chen C., Regehr W. G. The mechanism of cAMP-mediated enhancement at a cerebellar synapse. J Neurosci. 1997 Nov 15;17(22):8687–8694. doi: 10.1523/JNEUROSCI.17-22-08687.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen Y., Cardinaux J. R., Goodman R. H., Smolik S. M. Mutants of cubitus interruptus that are independent of PKA regulation are independent of hedgehog signaling. Development. 1999 Aug;126(16):3607–3616. doi: 10.1242/dev.126.16.3607. [DOI] [PubMed] [Google Scholar]
  12. Chou T. B., Perrimon N. The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1673–1679. doi: 10.1093/genetics/144.4.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chou T. B., Perrimon N. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics. 1992 Jul;131(3):643–653. doi: 10.1093/genetics/131.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chyb S., Hevers W., Forte M., Wolfgang W. J., Selinger Z., Hardie R. C. Modulation of the light response by cAMP in Drosophila photoreceptors. J Neurosci. 1999 Oct 15;19(20):8799–8807. doi: 10.1523/JNEUROSCI.19-20-08799.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Coffino P., Bourne H. R., Friedrich U., Hochman J., Insel P. A., Lemaire I., Melmon K. L., Tomkins G. M. Molecular mechanisms of cyclic AMP action: a genetic approach. Recent Prog Horm Res. 1976;32:669–684. doi: 10.1016/b978-0-12-571132-6.50037-3. [DOI] [PubMed] [Google Scholar]
  16. Colledge M., Scott J. D. AKAPs: from structure to function. Trends Cell Biol. 1999 Jun;9(6):216–221. doi: 10.1016/s0962-8924(99)01558-5. [DOI] [PubMed] [Google Scholar]
  17. Conklin B. R., Herzmark P., Ishida S., Voyno-Yasenetskaya T. A., Sun Y., Farfel Z., Bourne H. R. Carboxyl-terminal mutations of Gq alpha and Gs alpha that alter the fidelity of receptor activation. Mol Pharmacol. 1996 Oct;50(4):885–890. [PubMed] [Google Scholar]
  18. Connolly J. B., Roberts I. J., Armstrong J. D., Kaiser K., Forte M., Tully T., O'Kane C. J. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science. 1996 Dec 20;274(5295):2104–2107. doi: 10.1126/science.274.5295.2104. [DOI] [PubMed] [Google Scholar]
  19. Cooper D. M., Mons N., Karpen J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995 Mar 30;374(6521):421–424. doi: 10.1038/374421a0. [DOI] [PubMed] [Google Scholar]
  20. Davis R. L., Dauwalder B. The Drosophila dunce locus: learning and memory genes in the fly. Trends Genet. 1991 Jul;7(7):224–229. doi: 10.1016/0168-9525(91)90369-2. [DOI] [PubMed] [Google Scholar]
  21. Davis R. L. Physiology and biochemistry of Drosophila learning mutants. Physiol Rev. 1996 Apr;76(2):299–317. doi: 10.1152/physrev.1996.76.2.299. [DOI] [PubMed] [Google Scholar]
  22. De Vries L., Gist Farquhar M. RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends Cell Biol. 1999 Apr;9(4):138–144. doi: 10.1016/s0962-8924(99)01515-9. [DOI] [PubMed] [Google Scholar]
  23. Delgado R., Davis R., Bono M. R., Latorre R., Labarca P. Outward currents in Drosophila larval neurons: dunce lacks a maintained outward current component downregulated by cAMP. J Neurosci. 1998 Feb 15;18(4):1399–1407. doi: 10.1523/JNEUROSCI.18-04-01399.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Dixon D., Atwood H. L. Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction. J Neurosci. 1989 Dec;9(12):4246–4252. doi: 10.1523/JNEUROSCI.09-12-04246.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Edwards A. S., Scott J. D. A-kinase anchoring proteins: protein kinase A and beyond. Curr Opin Cell Biol. 2000 Apr;12(2):217–221. doi: 10.1016/s0955-0674(99)00085-x. [DOI] [PubMed] [Google Scholar]
  26. Engel J. E., Wu C. F. Altered habituation of an identified escape circuit in Drosophila memory mutants. J Neurosci. 1996 May 15;16(10):3486–3499. doi: 10.1523/JNEUROSCI.16-10-03486.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Farfel Z., Bourne H. R., Iiri T. The expanding spectrum of G protein diseases. N Engl J Med. 1999 Apr 1;340(13):1012–1020. doi: 10.1056/NEJM199904013401306. [DOI] [PubMed] [Google Scholar]
  28. Gilchrist A., Bünemann M., Li A., Hosey M. M., Hamm H. E. A dominant-negative strategy for studying roles of G proteins in vivo. J Biol Chem. 1999 Mar 5;274(10):6610–6616. doi: 10.1074/jbc.274.10.6610. [DOI] [PubMed] [Google Scholar]
  29. Gilchrist A., Mazzoni M. R., Dineen B., Dice A., Linden J., Proctor W. R., Lupica C. R., Dunwiddie T. V., Hamm H. E. Antagonists of the receptor-G protein interface block Gi-coupled signal transduction. J Biol Chem. 1998 Jun 12;273(24):14912–14919. doi: 10.1074/jbc.273.24.14912. [DOI] [PubMed] [Google Scholar]
  30. Gilman A. G. The Albert Lasker Medical Awards. G proteins and regulation of adenylyl cyclase. JAMA. 1989 Oct 6;262(13):1819–1825. [PubMed] [Google Scholar]
  31. Gloor G. B., Nassif N. A., Johnson-Schlitz D. M., Preston C. R., Engels W. R. Targeted gene replacement in Drosophila via P element-induced gap repair. Science. 1991 Sep 6;253(5024):1110–1117. doi: 10.1126/science.1653452. [DOI] [PubMed] [Google Scholar]
  32. Gottesman M. M., LeCam A., Bukowski M., Pastan I. Isolation of multiple classes of mutants of CHO cells resistant to cyclic AMP. Somatic Cell Genet. 1980 Jan;6(1):45–61. doi: 10.1007/BF01538695. [DOI] [PubMed] [Google Scholar]
  33. Hamm H. E. The many faces of G protein signaling. J Biol Chem. 1998 Jan 9;273(2):669–672. doi: 10.1074/jbc.273.2.669. [DOI] [PubMed] [Google Scholar]
  34. Han K. A., Millar N. S., Davis R. L. A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci. 1998 May 15;18(10):3650–3658. doi: 10.1523/JNEUROSCI.18-10-03650.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Han K. A., Millar N. S., Grotewiel M. S., Davis R. L. DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron. 1996 Jun;16(6):1127–1135. doi: 10.1016/s0896-6273(00)80139-7. [DOI] [PubMed] [Google Scholar]
  36. Hansen S. H., Casanova J. E. Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A. J Cell Biol. 1994 Aug;126(3):677–687. doi: 10.1083/jcb.126.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Harris B. A., Robishaw J. D., Mumby S. M., Gilman A. G. Molecular cloning of complementary DNA for the alpha subunit of the G protein that stimulates adenylate cyclase. Science. 1985 Sep 20;229(4719):1274–1277. doi: 10.1126/science.3839937. [DOI] [PubMed] [Google Scholar]
  38. Insel P. A., Bourne H. R., Coffino P., Tomkins G. M. Cyclic AMP-dependent protein kinase: pivotal role in regulation of enzyme induction and growth. Science. 1975 Nov 28;190(4217):896–898. doi: 10.1126/science.171770. [DOI] [PubMed] [Google Scholar]
  39. Jansen G., Thijssen K. L., Werner P., van der Horst M., Hazendonk E., Plasterk R. H. The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet. 1999 Apr;21(4):414–419. doi: 10.1038/7753. [DOI] [PubMed] [Google Scholar]
  40. Kalderon D., Rubin G. M. Isolation and characterization of Drosophila cAMP-dependent protein kinase genes. Genes Dev. 1988 Dec;2(12A):1539–1556. doi: 10.1101/gad.2.12a.1539. [DOI] [PubMed] [Google Scholar]
  41. Kandel E., Abel T. Neuropeptides, adenylyl cyclase, and memory storage. Science. 1995 May 12;268(5212):825–826. doi: 10.1126/science.7754367. [DOI] [PubMed] [Google Scholar]
  42. Korswagen H. C., Park J. H., Ohshima Y., Plasterk R. H. An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev. 1997 Jun 15;11(12):1493–1503. doi: 10.1101/gad.11.12.1493. [DOI] [PubMed] [Google Scholar]
  43. Korswagen H. C., van der Linden A. M., Plasterk R. H. G protein hyperactivation of the Caenorhabditis elegans adenylyl cyclase SGS-1 induces neuronal degeneration. EMBO J. 1998 Sep 1;17(17):5059–5065. doi: 10.1093/emboj/17.17.5059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kuromi H., Kidokoro Y. Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Neuron. 2000 Jul;27(1):133–143. doi: 10.1016/s0896-6273(00)00015-5. [DOI] [PubMed] [Google Scholar]
  45. Lane M. E., Kalderon D. Genetic investigation of cAMP-dependent protein kinase function in Drosophila development. Genes Dev. 1993 Jul;7(7A):1229–1243. doi: 10.1101/gad.7.7a.1229. [DOI] [PubMed] [Google Scholar]
  46. Lane M. E., Kalderon D. Localization and functions of protein kinase A during Drosophila oogenesis. Mech Dev. 1995 Feb;49(3):191–200. doi: 10.1016/0925-4773(94)00317-g. [DOI] [PubMed] [Google Scholar]
  47. Lane M. E., Kalderon D. RNA localization along the anteroposterior axis of the Drosophila oocyte requires PKA-mediated signal transduction to direct normal microtubule organization. Genes Dev. 1994 Dec 15;8(24):2986–2995. doi: 10.1101/gad.8.24.2986. [DOI] [PubMed] [Google Scholar]
  48. Levin L. R., Han P. L., Hwang P. M., Feinstein P. G., Davis R. L., Reed R. R. The Drosophila learning and memory gene rutabaga encodes a Ca2+/Calmodulin-responsive adenylyl cyclase. Cell. 1992 Feb 7;68(3):479–489. doi: 10.1016/0092-8674(92)90185-f. [DOI] [PubMed] [Google Scholar]
  49. Ma Y. C., Huang J., Ali S., Lowry W., Huang X. Y. Src tyrosine kinase is a novel direct effector of G proteins. Cell. 2000 Sep 1;102(5):635–646. doi: 10.1016/s0092-8674(00)00086-6. [DOI] [PubMed] [Google Scholar]
  50. Mattera R., Graziano M. P., Yatani A., Zhou Z., Graf R., Codina J., Birnbaumer L., Gilman A. G., Brown A. M. Splice variants of the alpha subunit of the G protein Gs activate both adenylyl cyclase and calcium channels. Science. 1989 Feb 10;243(4892):804–807. doi: 10.1126/science.2536957. [DOI] [PubMed] [Google Scholar]
  51. Meléndez A., Li W., Kalderon D. Activity, expression and function of a second Drosophila protein kinase A catalytic subunit gene. Genetics. 1995 Dec;141(4):1507–1520. doi: 10.1093/genetics/141.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Morris A. J., Malbon C. C. Physiological regulation of G protein-linked signaling. Physiol Rev. 1999 Oct;79(4):1373–1430. doi: 10.1152/physrev.1999.79.4.1373. [DOI] [PubMed] [Google Scholar]
  53. Neer E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell. 1995 Jan 27;80(2):249–257. doi: 10.1016/0092-8674(95)90407-7. [DOI] [PubMed] [Google Scholar]
  54. Ohlmeyer J. T., Kalderon D. Dual pathways for induction of wingless expression by protein kinase A and Hedgehog in Drosophila embryos. Genes Dev. 1997 Sep 1;11(17):2250–2258. doi: 10.1101/gad.11.17.2250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Ohlmeyer J. T., Kalderon D. Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature. 1998 Dec 24;396(6713):749–753. doi: 10.1038/25533. [DOI] [PubMed] [Google Scholar]
  56. Pereira H. S., MacDonald D. E., Hilliker A. J., Sokolowski M. B. Chaser (Csr), a new gene affecting larval foraging behavior in Drosophila melanogaster. Genetics. 1995 Sep;141(1):263–270. doi: 10.1093/genetics/141.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Pimplikar S. W., Simons K. Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein. Nature. 1993 Apr 1;362(6419):456–458. doi: 10.1038/362456a0. [DOI] [PubMed] [Google Scholar]
  58. Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. doi: 10.1016/b978-0-409-90042-2.50028-3. [DOI] [PubMed] [Google Scholar]
  59. Quan F., Forte M. A. Two forms of Drosophila melanogaster Gs alpha are produced by alternate splicing involving an unusual splice site. Mol Cell Biol. 1990 Mar;10(3):910–917. doi: 10.1128/mcb.10.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Quan F., Thomas L., Forte M. Drosophila stimulatory G protein alpha subunit activates mammalian adenylyl cyclase but interacts poorly with mammalian receptors: implications for receptor-G protein interaction. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1898–1902. doi: 10.1073/pnas.88.5.1898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Quan F., Wolfgang W. J., Forte M. A. The Drosophila gene coding for the alpha subunit of a stimulatory G protein is preferentially expressed in the nervous system. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4321–4325. doi: 10.1073/pnas.86.11.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Rasenick M. M., Watanabe M., Lazarevic M. B., Hatta S., Hamm H. E. Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors. J Biol Chem. 1994 Aug 26;269(34):21519–21525. [PubMed] [Google Scholar]
  63. Renger J. J., Ueda A., Atwood H. L., Govind C. K., Wu C. F. Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. J Neurosci. 2000 Jun 1;20(11):3980–3992. doi: 10.1523/JNEUROSCI.20-11-03980.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Salin P. A., Malenka R. C., Nicoll R. A. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron. 1996 Apr;16(4):797–803. doi: 10.1016/s0896-6273(00)80099-9. [DOI] [PubMed] [Google Scholar]
  65. Shuba Y. M., Hesslinger B., Trautwein W., McDonald T. F., Pelzer D. Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J Physiol. 1990 May;424:205–228. doi: 10.1113/jphysiol.1990.sp018063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Shuba Y. M., McDonald T. F., Trautwein W., Pelzer S., Pelzer D. Direct up-regulating effect of Gs on the whole-cell L-type Ca current in cardiac cells. Gen Physiol Biophys. 1991 Apr;10(2):105–110. [PubMed] [Google Scholar]
  67. Simonds W. F. G protein regulation of adenylate cyclase. Trends Pharmacol Sci. 1999 Feb;20(2):66–73. doi: 10.1016/s0165-6147(99)01307-3. [DOI] [PubMed] [Google Scholar]
  68. Spiegel A. M. The molecular basis of disorders caused by defects in G proteins. Horm Res. 1997;47(3):89–96. doi: 10.1159/000185441. [DOI] [PubMed] [Google Scholar]
  69. Sugamori K. S., Demchyshyn L. L., McConkey F., Forte M. A., Niznik H. B. A primordial dopamine D1-like adenylyl cyclase-linked receptor from Drosophila melanogaster displaying poor affinity for benzazepines. FEBS Lett. 1995 Apr 3;362(2):131–138. doi: 10.1016/0014-5793(95)00224-w. [DOI] [PubMed] [Google Scholar]
  70. Sunahara R. K., Tesmer J. J., Gilman A. G., Sprang S. R. Crystal structure of the adenylyl cyclase activator Gsalpha. Science. 1997 Dec 12;278(5345):1943–1947. doi: 10.1126/science.278.5345.1943. [DOI] [PubMed] [Google Scholar]
  71. Witz P., Amlaiky N., Plassat J. L., Maroteaux L., Borrelli E., Hen R. Cloning and characterization of a Drosophila serotonin receptor that activates adenylate cyclase. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8940–8944. doi: 10.1073/pnas.87.22.8940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Wolfgang W. J., Quan F., Goldsmith P., Unson C., Spiegel A., Forte M. Immunolocalization of G protein alpha-subunits in the Drosophila CNS. J Neurosci. 1990 Mar;10(3):1014–1024. doi: 10.1523/JNEUROSCI.10-03-01014.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Wolfgang W. J., Quan F., Thambi N., Forte M. Restricted spatial and temporal expression of G-protein alpha subunits during Drosophila embryogenesis. Development. 1991 Oct;113(2):527–538. doi: 10.1242/dev.113.2.527. [DOI] [PubMed] [Google Scholar]
  74. Wroe S. F., Kelsey G., Skinner J. A., Bodle D., Ball S. T., Beechey C. V., Peters J., Williamson C. M. An imprinted transcript, antisense to Nesp, adds complexity to the cluster of imprinted genes at the mouse Gnas locus. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3342–3346. doi: 10.1073/pnas.050015397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Yao W. D., Rusch J., Poo M. m., Wu C. F. Spontaneous acetylcholine secretion from developing growth cones of Drosophila central neurons in culture: effects of cAMP-pathway mutations. J Neurosci. 2000 Apr 1;20(7):2626–2637. doi: 10.1523/JNEUROSCI.20-07-02626.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Yatani A., Imoto Y., Codina J., Hamilton S. L., Brown A. M., Birnbaumer L. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca2+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J Biol Chem. 1988 Jul 15;263(20):9887–9895. [PubMed] [Google Scholar]
  77. Yoshihara M., Ueda A., Zhang D., Deitcher D. L., Schwarz T. L., Kidokoro Y. Selective effects of neuronal-synaptobrevin mutations on transmitter release evoked by sustained versus transient Ca2+ increases and by cAMP. J Neurosci. 1999 Apr 1;19(7):2432–2441. doi: 10.1523/JNEUROSCI.19-07-02432.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Yu S., Yu D., Lee E., Eckhaus M., Lee R., Corria Z., Accili D., Westphal H., Weinstein L. S. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsalpha) knockout mice is due to tissue-specific imprinting of the gsalpha gene. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8715–8720. doi: 10.1073/pnas.95.15.8715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Zhao M. L., Wu C. F. Alterations in frequency coding and activity dependence of excitability in cultured neurons of Drosophila memory mutants. J Neurosci. 1997 Mar 15;17(6):2187–2199. doi: 10.1523/JNEUROSCI.17-06-02187.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Zhong Y., Budnik V., Wu C. F. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade. J Neurosci. 1992 Feb;12(2):644–651. doi: 10.1523/JNEUROSCI.12-02-00644.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Zhong Y., Wu C. F. Differential modulation of potassium currents by cAMP and its long-term and short-term effects: dunce and rutabaga mutants of Drosophila. J Neurogenet. 1993 Aug;9(1):15–27. doi: 10.3109/01677069309167273. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES