Skip to main content
Genetics logoLink to Genetics
. 2001 Jul;158(3):1235–1251. doi: 10.1093/genetics/158.3.1235

Spectrum of nonrandom associations between microsatellite loci on human chromosome 11p15.

C Zapata 1, S Rodríguez 1, G Visedo 1, F Sacristán 1
PMCID: PMC1461729  PMID: 11454771

Abstract

Most evidence about nonrandom association of alleles at different loci, or gametic disequilibrium, across extensive anonymous regions of the human genome is based on the analysis of overall disequilibrium between pairs of microsatellites. However, analysis of interallelic associations is also necessary for a more complete description of disequilibrium. Here, we report a study characterizing the frequency and strength of both overall and interallelic disequilibrium between pairs of 12 microsatellite loci (CA repeats) spanning 19 cM (14 Mb) on human chromosome 11p15, in a large sample (810 haplotypes deduced from 405 individuals) drawn from a single population. Characterization of disequilibrium was carried out, taking into account the sign of the observed disequilibria. This strategy facilitates detection of associations and gives more accurate estimates of their intensities. Our results demonstrate that the incidence of disequilibrium over an extensive human chromosomal region is much greater than is commonly considered for populations that have expanded in size. In total, 44% of the pairs of microsatellite loci and 18% of the pairs of alleles showed significant nonrandom association. All the loci were involved in disequilibrium, although both the frequency and strength of interallelic disequilibrium were distributed nonuniformly along 11p15. These findings are especially relevant since significant associations were detected between loci separated by as much as 17-19 cM (7 cM on average). It was also found that the overall disequilibrium masks complicated patterns of association between pairs of alleles, dependent on their frequency and size. We suggest that the complex mutational dynamics at microsatellite loci could explain the allele-dependent disequilibrium patterns. These observations are also relevant to evaluation of the usefulness of microsatellite markers for fine-scale localization of disease genes.

Full Text

The Full Text of this article is available as a PDF (227.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernardi G. The human genome: organization and evolutionary history. Annu Rev Genet. 1995;29:445–476. doi: 10.1146/annurev.ge.29.120195.002305. [DOI] [PubMed] [Google Scholar]
  2. Bodmer W. F. Human genetics: the molecular challenge. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):1–13. doi: 10.1101/sqb.1986.051.01.003. [DOI] [PubMed] [Google Scholar]
  3. Boehnke M. A look at linkage disequilibrium. Nat Genet. 2000 Jul;25(3):246–247. doi: 10.1038/76980. [DOI] [PubMed] [Google Scholar]
  4. Brown A. H. Sample sizes required to detect linkage disequilibrium between two or three loci. Theor Popul Biol. 1975 Oct;8(2):184–201. doi: 10.1016/0040-5809(75)90031-3. [DOI] [PubMed] [Google Scholar]
  5. Budowle B., Chakraborty R., Giusti A. M., Eisenberg A. J., Allen R. C. Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet. 1991 Jan;48(1):137–144. [PMC free article] [PubMed] [Google Scholar]
  6. Chakraborty R., Weiss K. M. Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9119–9123. doi: 10.1073/pnas.85.23.9119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins A., Lonjou C., Morton N. E. Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15173–15177. doi: 10.1073/pnas.96.26.15173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eaves I. A., Merriman T. R., Barber R. A., Nutland S., Tuomilehto-Wolf E., Tuomilehto J., Cucca F., Todd J. A. The genetically isolated populations of Finland and sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nat Genet. 2000 Jul;25(3):320–323. doi: 10.1038/77091. [DOI] [PubMed] [Google Scholar]
  9. Ellegren H. Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet. 2000 Apr;24(4):400–402. doi: 10.1038/74249. [DOI] [PubMed] [Google Scholar]
  10. Fallin D., Schork N. J. Accuracy of haplotype frequency estimation for biallelic loci, via the expectation-maximization algorithm for unphased diploid genotype data. Am J Hum Genet. 2000 Aug 22;67(4):947–959. doi: 10.1086/303069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Franklin I., Lewontin R. C. Is the gene the unit of selection? Genetics. 1970 Aug;65(4):707–734. doi: 10.1093/genetics/65.4.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freimer N. B., Service S. K., Slatkin M. Expanding on population studies. Nat Genet. 1997 Dec;17(4):371–373. doi: 10.1038/ng1297-371. [DOI] [PubMed] [Google Scholar]
  13. Garza J. C., Slatkin M., Freimer N. B. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol. 1995 Jul;12(4):594–603. doi: 10.1093/oxfordjournals.molbev.a040239. [DOI] [PubMed] [Google Scholar]
  14. Goldstein D. B., Pollock D. D. Launching microsatellites: a review of mutation processes and methods of phylogenetic interference. J Hered. 1997 Sep-Oct;88(5):335–342. doi: 10.1093/oxfordjournals.jhered.a023114. [DOI] [PubMed] [Google Scholar]
  15. Gordon D., Simonic I., Ott J. Significant evidence for linkage disequilibrium over a 5-cM region among Afrikaners. Genomics. 2000 May 15;66(1):87–92. doi: 10.1006/geno.2000.6190. [DOI] [PubMed] [Google Scholar]
  16. Guo S. W., Thompson E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 1992 Jun;48(2):361–372. [PubMed] [Google Scholar]
  17. Haas H., Budowle B., Weiler G. Horizontal polyacrylamide gel electrophoresis for the separation of DNA fragments. Electrophoresis. 1994 Feb;15(2):153–158. doi: 10.1002/elps.1150150126. [DOI] [PubMed] [Google Scholar]
  18. Hedrick P. W. Gametic disequilibrium measures: proceed with caution. Genetics. 1987 Oct;117(2):331–341. doi: 10.1093/genetics/117.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hill W. G. Estimation of linkage disequilibrium in randomly mating populations. Heredity (Edinb) 1974 Oct;33(2):229–239. doi: 10.1038/hdy.1974.89. [DOI] [PubMed] [Google Scholar]
  20. Huttley G. A., Smith M. W., Carrington M., O'Brien S. J. A scan for linkage disequilibrium across the human genome. Genetics. 1999 Aug;152(4):1711–1722. doi: 10.1093/genetics/152.4.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hästbacka J., de la Chapelle A., Mahtani M. M., Clines G., Reeve-Daly M. P., Daly M., Hamilton B. A., Kusumi K., Trivedi B., Weaver A. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell. 1994 Sep 23;78(6):1073–1087. doi: 10.1016/0092-8674(94)90281-x. [DOI] [PubMed] [Google Scholar]
  22. Jin L., Macaubas C., Hallmayer J., Kimura A., Mignot E. Mutation rate varies among alleles at a microsatellite locus: phylogenetic evidence. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15285–15288. doi: 10.1073/pnas.93.26.15285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jorde L. B. Linkage disequilibrium and the search for complex disease genes. Genome Res. 2000 Oct;10(10):1435–1444. doi: 10.1101/gr.144500. [DOI] [PubMed] [Google Scholar]
  24. Karlin S., Piazza A. Statistical methods for assessing linkage disequilibrium at the HLA-A, B, C loci. Ann Hum Genet. 1981 Feb;45(Pt 1):79–94. doi: 10.1111/j.1469-1809.1981.tb00308.x. [DOI] [PubMed] [Google Scholar]
  25. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
  26. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet. 1999 Jun;22(2):139–144. doi: 10.1038/9642. [DOI] [PubMed] [Google Scholar]
  27. Lewontin R C. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964 Jan;49(1):49–67. doi: 10.1093/genetics/49.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lewontin R. C. Population genetics. Annu Rev Genet. 1985;19:81–102. doi: 10.1146/annurev.ge.19.120185.000501. [DOI] [PubMed] [Google Scholar]
  29. Macaubas C., Jin L., Hallmayer J., Kimura A., Mignot E. The complex mutation pattern of a microsatellite. Genome Res. 1997 Jun;7(6):635–641. doi: 10.1101/gr.7.6.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967 Feb;27(2):209–220. [PubMed] [Google Scholar]
  31. Ohta T. Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1940–1944. doi: 10.1073/pnas.79.6.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ott J., Rabinowitz D. The effect of marker heterozygosity on the power to detect linkage disequilibrium. Genetics. 1997 Oct;147(2):927–930. doi: 10.1093/genetics/147.2.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pena S. D., de Souza K. T., de Andrade M., Chakraborty R. Allelic associations of two polymorphic microsatellites in intron 40 of the human von Willebrand factor gene. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):723–727. doi: 10.1073/pnas.91.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Peterson A. C., Di Rienzo A., Lehesjoki A. E., de la Chapelle A., Slatkin M., Freimer N. B. The distribution of linkage disequilibrium over anonymous genome regions. Hum Mol Genet. 1995 May;4(5):887–894. doi: 10.1093/hmg/4.5.887. [DOI] [PubMed] [Google Scholar]
  35. Risch N. J. Searching for genetic determinants in the new millennium. Nature. 2000 Jun 15;405(6788):847–856. doi: 10.1038/35015718. [DOI] [PubMed] [Google Scholar]
  36. Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
  37. Salas A., Comas D., Lareu M. V., Bertranpetit J., Carracedo A. mtDNA analysis of the Galician population: a genetic edge of European variation. Eur J Hum Genet. 1998 Jul-Aug;6(4):365–375. doi: 10.1038/sj.ejhg.5200202. [DOI] [PubMed] [Google Scholar]
  38. Schlötterer C., Ritter R., Harr B., Brem G. High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol Biol Evol. 1998 Oct;15(10):1269–1274. doi: 10.1093/oxfordjournals.molbev.a025855. [DOI] [PubMed] [Google Scholar]
  39. Schlötterer C., Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992 Jan 25;20(2):211–215. doi: 10.1093/nar/20.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sherrington R., Melmer G., Dixon M., Curtis D., Mankoo B., Kalsi G., Gurling H. Linkage disequilibrium between two highly polymorphic microsatellites. Am J Hum Genet. 1991 Nov;49(5):966–971. [PMC free article] [PubMed] [Google Scholar]
  41. Slatkin M., Excoffier L. Testing for linkage disequilibrium in genotypic data using the Expectation-Maximization algorithm. Heredity (Edinb) 1996 Apr;76(Pt 4):377–383. doi: 10.1038/hdy.1996.55. [DOI] [PubMed] [Google Scholar]
  42. Slatkin M. Linkage disequilibrium in growing and stable populations. Genetics. 1994 May;137(1):331–336. doi: 10.1093/genetics/137.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stephens J. C., Briscoe D., O'Brien S. J. Mapping by admixture linkage disequilibrium in human populations: limits and guidelines. Am J Hum Genet. 1994 Oct;55(4):809–824. [PMC free article] [PubMed] [Google Scholar]
  44. Taillon-Miller P., Bauer-Sardiña I., Saccone N. L., Putzel J., Laitinen T., Cao A., Kere J., Pilia G., Rice J. P., Kwok P. Y. Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat Genet. 2000 Jul;25(3):324–328. doi: 10.1038/77100. [DOI] [PubMed] [Google Scholar]
  45. Takahata N., Satta Y. Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4811–4815. doi: 10.1073/pnas.94.9.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Terwilliger J. D., Weiss K. M. Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr Opin Biotechnol. 1998 Dec;9(6):578–594. doi: 10.1016/s0958-1669(98)80135-3. [DOI] [PubMed] [Google Scholar]
  47. Thompson E. A., Deeb S., Walker D., Motulsky A. G. The detection of linkage disequilibrium between closely linked markers: RFLPs at the AI-CIII apolipoprotein genes. Am J Hum Genet. 1988 Jan;42(1):113–124. [PMC free article] [PubMed] [Google Scholar]
  48. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wei C. C., Chiang F. T., Lin K. S., Lin L. I. The spectrum of microsatellite loci on chromosomes 7 and 8 in Taiwan aboriginal populations: a comparative population genetic study. Hum Genet. 1999 Apr;104(4):333–340. doi: 10.1007/s004390050962. [DOI] [PubMed] [Google Scholar]
  50. Weir B. S., Cockerham C. C. Testing Hypotheses about Linkage Disequilibrium with Multiple Alleles. Genetics. 1978 Mar;88(3):633–642. doi: 10.1093/genetics/88.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Weir B. S. Inferences about linkage disequilibrium. Biometrics. 1979 Mar;35(1):235–254. [PubMed] [Google Scholar]
  52. Weissensteiner T., Lanchbury J. S. Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. Biotechniques. 1996 Dec;21(6):1102–1108. doi: 10.2144/96216rr03. [DOI] [PubMed] [Google Scholar]
  53. Wilson J. F., Goldstein D. B. Consistent long-range linkage disequilibrium generated by admixture in a Bantu-Semitic hybrid population. Am J Hum Genet. 2000 Aug 28;67(4):926–935. doi: 10.1086/303083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zapata C., Alvarez G., Carollo C. Approximate variance of the standardized measure of gametic disequilibrium D'. Am J Hum Genet. 1997 Sep;61(3):771–774. doi: 10.1016/S0002-9297(07)64342-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zapata C., Alvarez G. On Fisher's exact test for detecting gametic disequilibrium between DNA polymorphisms. Ann Hum Genet. 1997 Jan;61(Pt 1):71–77. doi: 10.1046/j.1469-1809.1997.6110069.x. [DOI] [PubMed] [Google Scholar]
  56. Zapata C., Alvarez G. On the detection of nonrandom associations between DNA polymorphisms in natural populations of Drosophila. Mol Biol Evol. 1993 Jul;10(4):823–841. doi: 10.1093/oxfordjournals.molbev.a040045. [DOI] [PubMed] [Google Scholar]
  57. Zapata C. The D' measure of overall gametic disequilibrium between pairs of multiallelic loci. Evolution. 2000 Oct;54(5):1809–1812. [PubMed] [Google Scholar]
  58. Zapata C., Visedo G. Gametic disequilibrium and physical distance. Am J Hum Genet. 1995 Jul;57(1):190–193. [PMC free article] [PubMed] [Google Scholar]
  59. Zerba K. E., Kessling A. M., Davignon J., Sing C. F. Genetic structure and the search for genotype-phenotype relationships: an example from disequilibrium in the Apo B gene region. Genetics. 1991 Oct;129(2):525–533. doi: 10.1093/genetics/129.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES