Skip to main content
Genetics logoLink to Genetics
. 2001 Jul;158(3):1071–1080. doi: 10.1093/genetics/158.3.1071

Multiple signaling mechanisms of the UNC-6/netrin receptors UNC-5 and UNC-40/DCC in vivo.

D C Merz 1, H Zheng 1, M T Killeen 1, A Krizus 1, J G Culotti 1
PMCID: PMC1461735  PMID: 11454756

Abstract

Cell and growth cone migrations along the dorsoventral axis of Caenorhabditis elegans are mediated by the UNC-5 and UNC-40 receptor subtypes for the secreted UNC-6 guidance cue. To characterize UNC-6 receptor function in vivo, we have examined genetic interactions between unc-5 and unc-40 in the migrations of the hermaphrodite distal tip cells. We report that cell migration defects as severe as those associated with a null mutation in unc-6 are produced only by null mutations in both unc-5 and unc-40, indicating that either receptor retains some partial function in the absence of the other. We show that hypomorphic unc-5 alleles exhibit two distinct types of interallelic genetic interactions. In an unc-40 wild-type genetic background, some pairs of hypomorphic unc-5 alleles exhibit a partial allelic complementation. In an unc-40 null background, however, we observed that unc-5 hypomorphs exhibit dominant negative effects. We propose that the UNC-5 and UNC-40 netrin receptors can function to mediate chemorepulsion in DTC migrations either independently or together, and the observed genetic interactions suggest that this flexibility in modes of signaling results from the formation of a variety of oligomeric receptor complexes.

Full Text

The Full Text of this article is available as a PDF (253.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman S. L., Kozak L. P., Przyborski S. A., Rund L. A., Boyer B. B., Knowles B. B. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature. 1997 Apr 24;386(6627):838–842. doi: 10.1038/386838a0. [DOI] [PubMed] [Google Scholar]
  2. Chan S. S., Zheng H., Su M. W., Wilk R., Killeen M. T., Hedgecock E. M., Culotti J. G. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell. 1996 Oct 18;87(2):187–195. doi: 10.1016/s0092-8674(00)81337-9. [DOI] [PubMed] [Google Scholar]
  3. Colamarino S. A., Tessier-Lavigne M. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell. 1995 May 19;81(4):621–629. doi: 10.1016/0092-8674(95)90083-7. [DOI] [PubMed] [Google Scholar]
  4. Colavita A., Culotti J. G. Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in Caenorhabditis elegans. Dev Biol. 1998 Feb 1;194(1):72–85. doi: 10.1006/dbio.1997.8790. [DOI] [PubMed] [Google Scholar]
  5. Fazeli A., Dickinson S. L., Hermiston M. L., Tighe R. V., Steen R. G., Small C. G., Stoeckli E. T., Keino-Masu K., Masu M., Rayburn H. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature. 1997 Apr 24;386(6627):796–804. doi: 10.1038/386796a0. [DOI] [PubMed] [Google Scholar]
  6. Hapner S. J., Boeshore K. L., Large T. H., Lefcort F. Neural differentiation promoted by truncated trkC receptors in collaboration with p75(NTR). Dev Biol. 1998 Sep 1;201(1):90–100. doi: 10.1006/dbio.1998.8970. [DOI] [PubMed] [Google Scholar]
  7. Harris R., Sabatelli L. M., Seeger M. A. Guidance cues at the Drosophila CNS midline: identification and characterization of two Drosophila Netrin/UNC-6 homologs. Neuron. 1996 Aug;17(2):217–228. doi: 10.1016/s0896-6273(00)80154-3. [DOI] [PubMed] [Google Scholar]
  8. Hedgecock E. M., Culotti J. G., Hall D. H., Stern B. D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development. 1987 Jul;100(3):365–382. doi: 10.1242/dev.100.3.365. [DOI] [PubMed] [Google Scholar]
  9. Hedgecock E. M., Culotti J. G., Hall D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron. 1990 Jan;4(1):61–85. doi: 10.1016/0896-6273(90)90444-k. [DOI] [PubMed] [Google Scholar]
  10. Hong K., Hinck L., Nishiyama M., Poo M. M., Tessier-Lavigne M., Stein E. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell. 1999 Jun 25;97(7):927–941. doi: 10.1016/s0092-8674(00)80804-1. [DOI] [PubMed] [Google Scholar]
  11. Ishii N., Wadsworth W. G., Stern B. D., Culotti J. G., Hedgecock E. M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron. 1992 Nov;9(5):873–881. doi: 10.1016/0896-6273(92)90240-e. [DOI] [PubMed] [Google Scholar]
  12. Kennedy T. E., Serafini T., de la Torre J. R., Tessier-Lavigne M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell. 1994 Aug 12;78(3):425–435. doi: 10.1016/0092-8674(94)90421-9. [DOI] [PubMed] [Google Scholar]
  13. Kolodziej P. A., Timpe L. C., Mitchell K. J., Fried S. R., Goodman C. S., Jan L. Y., Jan Y. N. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell. 1996 Oct 18;87(2):197–204. doi: 10.1016/s0092-8674(00)81338-0. [DOI] [PubMed] [Google Scholar]
  14. Lauffenburger D. A., Horwitz A. F. Cell migration: a physically integrated molecular process. Cell. 1996 Feb 9;84(3):359–369. doi: 10.1016/s0092-8674(00)81280-5. [DOI] [PubMed] [Google Scholar]
  15. Leonardo E. D., Hinck L., Masu M., Keino-Masu K., Ackerman S. L., Tessier-Lavigne M. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature. 1997 Apr 24;386(6627):833–838. doi: 10.1038/386833a0. [DOI] [PubMed] [Google Scholar]
  16. Leung-Hagesteijn C., Spence A. M., Stern B. D., Zhou Y., Su M. W., Hedgecock E. M., Culotti J. G. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell. 1992 Oct 16;71(2):289–299. doi: 10.1016/0092-8674(92)90357-i. [DOI] [PubMed] [Google Scholar]
  17. McIntire S. L., Garriga G., White J., Jacobson D., Horvitz H. R. Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron. 1992 Feb;8(2):307–322. doi: 10.1016/0896-6273(92)90297-q. [DOI] [PubMed] [Google Scholar]
  18. Merz D. C., Culotti J. G. Genetic analysis of growth cone migrations in Caenorhabditis elegans. J Neurobiol. 2000 Aug;44(2):281–288. [PubMed] [Google Scholar]
  19. Ming G. L., Song H. J., Berninger B., Holt C. E., Tessier-Lavigne M., Poo M. M. cAMP-dependent growth cone guidance by netrin-1. Neuron. 1997 Dec;19(6):1225–1235. doi: 10.1016/s0896-6273(00)80414-6. [DOI] [PubMed] [Google Scholar]
  20. Mitchell K. J., Doyle J. L., Serafini T., Kennedy T. E., Tessier-Lavigne M., Goodman C. S., Dickson B. J. Genetic analysis of Netrin genes in Drosophila: Netrins guide CNS commissural axons and peripheral motor axons. Neuron. 1996 Aug;17(2):203–215. doi: 10.1016/s0896-6273(00)80153-1. [DOI] [PubMed] [Google Scholar]
  21. Przyborski S. A., Knowles B. B., Ackerman S. L. Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary. Development. 1998 Jan;125(1):41–50. doi: 10.1242/dev.125.1.41. [DOI] [PubMed] [Google Scholar]
  22. Raz E., Schejter E. D., Shilo B. Z. Interallelic complementation among DER/flb alleles: implications for the mechanism of signal transduction by receptor-tyrosine kinases. Genetics. 1991 Sep;129(1):191–201. doi: 10.1093/genetics/129.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Serafini T., Colamarino S. A., Leonardo E. D., Wang H., Beddington R., Skarnes W. C., Tessier-Lavigne M. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell. 1996 Dec 13;87(6):1001–1014. doi: 10.1016/s0092-8674(00)81795-x. [DOI] [PubMed] [Google Scholar]
  24. Serafini T., Kennedy T. E., Galko M. J., Mirzayan C., Jessell T. M., Tessier-Lavigne M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell. 1994 Aug 12;78(3):409–424. doi: 10.1016/0092-8674(94)90420-0. [DOI] [PubMed] [Google Scholar]
  25. Su M., Merz D. C., Killeen M. T., Zhou Y., Zheng H., Kramer J. M., Hedgecock E. M., Culotti J. G. Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. Development. 2000 Feb;127(3):585–594. doi: 10.1242/dev.127.3.585. [DOI] [PubMed] [Google Scholar]
  26. Takahashi T., Fournier A., Nakamura F., Wang L. H., Murakami Y., Kalb R. G., Fujisawa H., Strittmatter S. M. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell. 1999 Oct 1;99(1):59–69. doi: 10.1016/s0092-8674(00)80062-8. [DOI] [PubMed] [Google Scholar]
  27. Tamagnone L., Artigiani S., Chen H., He Z., Ming G. I., Song H., Chedotal A., Winberg M. L., Goodman C. S., Poo M. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell. 1999 Oct 1;99(1):71–80. doi: 10.1016/s0092-8674(00)80063-x. [DOI] [PubMed] [Google Scholar]
  28. Wadsworth W. G., Bhatt H., Hedgecock E. M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron. 1996 Jan;16(1):35–46. doi: 10.1016/s0896-6273(00)80021-5. [DOI] [PubMed] [Google Scholar]
  29. de la Torre J. R., Höpker V. H., Ming G. L., Poo M. M., Tessier-Lavigne M., Hemmati-Brivanlou A., Holt C. E. Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron. 1997 Dec;19(6):1211–1224. doi: 10.1016/s0896-6273(00)80413-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES