Skip to main content
Genetics logoLink to Genetics
. 2001 Aug;158(4):1697–1710. doi: 10.1093/genetics/158.4.1697

The molecular genetics and evolution of red and green color vision in vertebrates.

S Yokoyama 1, F B Radlwimmer 1
PMCID: PMC1461741  PMID: 11545071

Abstract

To better understand the evolution of red-green color vision in vertebrates, we inferred the amino acid sequences of the ancestral pigments of 11 selected visual pigments: the LWS pigments of cave fish (Astyanax fasciatus), frog (Xenopus laevis), chicken (Gallus gallus), chameleon (Anolis carolinensis), goat (Capra hircus), and human (Homo sapiens);and the MWS pigments of cave fish, gecko (Gekko gekko), mouse (Mus musculus), squirrel (Sciurus carolinensis), and human. We constructed these ancestral pigments by introducing the necessary mutations into contemporary pigments and evaluated their absorption spectra using an in vitro assay. The results show that the common ancestor of vertebrates and most other ancestors had LWS pigments. Multiple regression analyses of ancestral and contemporary MWS and LWS pigments show that single mutations S180A, H197Y, Y277F, T285A, A308S, and double mutations S180A/H197Y shift the lambda(max) of the pigments by -7, -28, -8, -15, -27, and 11 nm, respectively. It is most likely that this "five-sites" rule is the molecular basis of spectral tuning in the MWS and LWS pigments during vertebrate evolution.

Full Text

The Full Text of this article is available as a PDF (248.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asenjo A. B., Rim J., Oprian D. D. Molecular determinants of human red/green color discrimination. Neuron. 1994 May;12(5):1131–1138. doi: 10.1016/0896-6273(94)90320-4. [DOI] [PubMed] [Google Scholar]
  2. Besharse J. C., Witkovsky P. Light-evoked contraction of red absorbing cones in the Xenopus retina is maximally sensitive to green light. Vis Neurosci. 1992 Mar;8(3):243–249. doi: 10.1017/s0952523800002893. [DOI] [PubMed] [Google Scholar]
  3. Bowmaker J. K., Heath L. A., Wilkie S. E., Hunt D. M. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 1997 Aug;37(16):2183–2194. doi: 10.1016/s0042-6989(97)00026-6. [DOI] [PubMed] [Google Scholar]
  4. Chan T., Lee M., Sakmar T. P. Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. J Biol Chem. 1992 May 15;267(14):9478–9480. [PubMed] [Google Scholar]
  5. David-Gray Z. K., Cooper H. M., Janssen J. W., Nevo E., Foster R. G. Spectral tuning of a circadian photopigment in a subterranean 'blind' mammal (Spalax ehrenbergi). FEBS Lett. 1999 Nov 19;461(3):343–347. doi: 10.1016/s0014-5793(99)01455-6. [DOI] [PubMed] [Google Scholar]
  6. Ebrey T., Koutalos Y. Vertebrate photoreceptors. Prog Retin Eye Res. 2001 Jan;20(1):49–94. doi: 10.1016/s1350-9462(00)00014-8. [DOI] [PubMed] [Google Scholar]
  7. Fasick J. I., Cronin T. W., Hunt D. M., Robinson P. R. The visual pigments of the bottlenose dolphin (Tursiops truncatus). Vis Neurosci. 1998 Jul-Aug;15(4):643–651. doi: 10.1017/s0952523898154056. [DOI] [PubMed] [Google Scholar]
  8. Hadjeb N., Berkowitz G. A. Preparation of T-over-hang vectors with high PCR product cloning efficiency. Biotechniques. 1996 Jan;20(1):20–22. doi: 10.2144/96201bm02. [DOI] [PubMed] [Google Scholar]
  9. Hubbard R., Kropf A. THE ACTION OF LIGHT ON RHODOPSIN. Proc Natl Acad Sci U S A. 1958 Feb;44(2):130–139. doi: 10.1073/pnas.44.2.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huchon D., Catzeflis F. M., Douzery E. J. Molecular evolution of the nuclear von Willebrand factor gene in mammals and the phylogeny of rodents. Mol Biol Evol. 1999 May;16(5):577–589. doi: 10.1093/oxfordjournals.molbev.a026140. [DOI] [PubMed] [Google Scholar]
  11. Jacobs G. H. The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc. 1993 Aug;68(3):413–471. doi: 10.1111/j.1469-185x.1993.tb00738.x. [DOI] [PubMed] [Google Scholar]
  12. Johnson R. L., Grant K. B., Zankel T. C., Boehm M. F., Merbs S. L., Nathans J., Nakanishi K. Cloning and expression of goldfish opsin sequences. Biochemistry. 1993 Jan 12;32(1):208–214. doi: 10.1021/bi00052a027. [DOI] [PubMed] [Google Scholar]
  13. Jones D. T., Taylor W. R., Thornton J. M. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992 Jun;8(3):275–282. doi: 10.1093/bioinformatics/8.3.275. [DOI] [PubMed] [Google Scholar]
  14. Kawamura S., Blow N. S., Yokoyama S. Genetic analyses of visual pigments of the pigeon (Columba livia). Genetics. 1999 Dec;153(4):1839–1850. doi: 10.1093/genetics/153.4.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kawamura S., Yokoyama S. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Res. 1998 Jan;38(1):37–44. doi: 10.1016/s0042-6989(97)00160-0. [DOI] [PubMed] [Google Scholar]
  16. Khorana H. G., Knox B. E., Nasi E., Swanson R., Thompson D. A. Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7917–7921. doi: 10.1073/pnas.85.21.7917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kleinschmidt J., Harosi F. I. Anion sensitivity and spectral tuning of cone visual pigments in situ. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9181–9185. doi: 10.1073/pnas.89.19.9181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
  19. Madsen O., Scally M., Douady C. J., Kao D. J., DeBry R. W., Adkins R., Amrine H. M., Stanhope M. J., de Jong W. W., Springer M. S. Parallel adaptive radiations in two major clades of placental mammals. Nature. 2001 Feb 1;409(6820):610–614. doi: 10.1038/35054544. [DOI] [PubMed] [Google Scholar]
  20. Merbs S. L., Nathans J. Absorption spectra of human cone pigments. Nature. 1992 Apr 2;356(6368):433–435. doi: 10.1038/356433a0. [DOI] [PubMed] [Google Scholar]
  21. Merbs S. L., Nathans J. Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments. Photochem Photobiol. 1993 Nov;58(5):706–710. doi: 10.1111/j.1751-1097.1993.tb04956.x. [DOI] [PubMed] [Google Scholar]
  22. Murphy W. J., Eizirik E., Johnson W. E., Zhang Y. P., Ryder O. A., O'Brien S. J. Molecular phylogenetics and the origins of placental mammals. Nature. 2001 Feb 1;409(6820):614–618. doi: 10.1038/35054550. [DOI] [PubMed] [Google Scholar]
  23. Nei M., Zhang J., Yokoyama S. Color vision of ancestral organisms of higher primates. Mol Biol Evol. 1997 Jun;14(6):611–618. doi: 10.1093/oxfordjournals.molbev.a025800. [DOI] [PubMed] [Google Scholar]
  24. Neitz M., Neitz J., Jacobs G. H. Spectral tuning of pigments underlying red-green color vision. Science. 1991 May 17;252(5008):971–974. doi: 10.1126/science.1903559. [DOI] [PubMed] [Google Scholar]
  25. Novacek M. J. Mammalian phylogeny: shaking the tree. Nature. 1992 Mar 12;356(6365):121–125. doi: 10.1038/356121a0. [DOI] [PubMed] [Google Scholar]
  26. Okano T., Fukada Y., Artamonov I. D., Yoshizawa T. Purification of cone visual pigments from chicken retina. Biochemistry. 1989 Oct 31;28(22):8848–8856. doi: 10.1021/bi00448a025. [DOI] [PubMed] [Google Scholar]
  27. Oprian D. D., Asenjo A. B., Lee N., Pelletier S. L. Design, chemical synthesis, and expression of genes for the three human color vision pigments. Biochemistry. 1991 Dec 3;30(48):11367–11372. doi: 10.1021/bi00112a002. [DOI] [PubMed] [Google Scholar]
  28. Palacios A. G., Varela F. J., Srivastava R., Goldsmith T. H. Spectral sensitivity of cones in the goldfish, Carassius auratus. Vision Res. 1998 Jul;38(14):2135–2146. doi: 10.1016/s0042-6989(97)00411-2. [DOI] [PubMed] [Google Scholar]
  29. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
  30. Radlwimmer F. B., Yokoyama S. Cloning and expression of the red visual pigment gene of goat (Capra hircus). Gene. 1997 Oct 1;198(1-2):211–215. doi: 10.1016/s0378-1119(97)00316-8. [DOI] [PubMed] [Google Scholar]
  31. Radlwimmer F. B., Yokoyama S. Genetic analyses of the green visual pigments of rabbit (Oryctolagus cuniculus) and rat (Rattus norvegicus). Gene. 1998 Sep 18;218(1-2):103–109. doi: 10.1016/s0378-1119(98)00359-x. [DOI] [PubMed] [Google Scholar]
  32. Shoshani J., McKenna M. C. Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol Phylogenet Evol. 1998 Jun;9(3):572–584. doi: 10.1006/mpev.1998.0520. [DOI] [PubMed] [Google Scholar]
  33. Sun H., Macke J. P., Nathans J. Mechanisms of spectral tuning in the mouse green cone pigment. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8860–8865. doi: 10.1073/pnas.94.16.8860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Waddell P. J., Cao Y., Hasegawa M., Mindell D. P. Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Syst Biol. 1999 Mar;48(1):119–137. doi: 10.1080/106351599260481. [DOI] [PubMed] [Google Scholar]
  35. Waddell P. J., Cao Y., Hauf J., Hasegawa M. Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-LogDet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo, and elephant. Syst Biol. 1999 Mar;48(1):31–53. doi: 10.1080/106351599260427. [DOI] [PubMed] [Google Scholar]
  36. Winderickx J., Lindsey D. T., Sanocki E., Teller D. Y., Motulsky A. G., Deeb S. S. Polymorphism in red photopigment underlies variation in colour matching. Nature. 1992 Apr 2;356(6368):431–433. doi: 10.1038/356431a0. [DOI] [PubMed] [Google Scholar]
  37. Witkovsky P., Levine J. S., Engbretson G. A., Hassin G., MacNichol E. F., Jr A microspectrophotometric study of normal and artificial visual pigments in the photoreceptors of Xenopus laevis. Vision Res. 1981;21(6):867–873. doi: 10.1016/0042-6989(81)90187-5. [DOI] [PubMed] [Google Scholar]
  38. Yang Z., Kumar S., Nei M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics. 1995 Dec;141(4):1641–1650. doi: 10.1093/genetics/141.4.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]
  40. Yokoyama R., Knox B. E., Yokoyama S. Rhodopsin from the fish, Astyanax: role of tyrosine 261 in the red shift. Invest Ophthalmol Vis Sci. 1995 Apr;36(5):939–945. [PubMed] [Google Scholar]
  41. Yokoyama R., Yokoyama S. Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9315–9318. doi: 10.1073/pnas.87.23.9315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yokoyama S., Blow N. S., Radlwimmer F. B. Molecular evolution of color vision of zebra finch. Gene. 2000 Dec 23;259(1-2):17–24. doi: 10.1016/s0378-1119(00)00435-2. [DOI] [PubMed] [Google Scholar]
  43. Yokoyama S. Molecular bases of color vision in vertebrates. Genes Genet Syst. 1999 Oct;74(5):189–199. doi: 10.1266/ggs.74.189. [DOI] [PubMed] [Google Scholar]
  44. Yokoyama S. Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res. 2000 Jul;19(4):385–419. doi: 10.1016/s1350-9462(00)00002-1. [DOI] [PubMed] [Google Scholar]
  45. Yokoyama S. Phylogenetic analysis and experimental approaches to study color vision in vertebrates. Methods Enzymol. 2000;315:312–325. doi: 10.1016/s0076-6879(00)15851-3. [DOI] [PubMed] [Google Scholar]
  46. Yokoyama S., Radlwimmer F. B. The "five-sites" rule and the evolution of red and green color vision in mammals. Mol Biol Evol. 1998 May;15(5):560–567. doi: 10.1093/oxfordjournals.molbev.a025956. [DOI] [PubMed] [Google Scholar]
  47. Yokoyama S., Radlwimmer F. B. The "five-sites" rule and the evolution of red and green color vision in mammals. Mol Biol Evol. 1998 May;15(5):560–567. doi: 10.1093/oxfordjournals.molbev.a025956. [DOI] [PubMed] [Google Scholar]
  48. Yokoyama S., Radlwimmer F. B. The molecular genetics of red and green color vision in mammals. Genetics. 1999 Oct;153(2):919–932. doi: 10.1093/genetics/153.2.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yokoyama S., Yokoyama R. Molecular evolution of human visual pigment genes. Mol Biol Evol. 1989 Mar;6(2):186–197. doi: 10.1093/oxfordjournals.molbev.a040537. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES