Skip to main content
Genetics logoLink to Genetics
. 2001 Aug;158(4):1597–1614. doi: 10.1093/genetics/158.4.1597

Map position and expression of the genes in the 38 region of Drosophila.

H Butler 1, S Levine 1, X Wang 1, S Bonyadi 1, G Fu 1, P Lasko 1, B Suter 1, R Doerig 1
PMCID: PMC1461758  PMID: 11514449

Abstract

With the completion of the Drosophila genome sequence, an important next step is to extract its biological information by systematic functional analysis of genes. We have produced a high-resolution genetic map of cytological region 38 of Drosophila using 41 deficiency stocks that provide a total of 54 breakpoints within the region. Of a total of 45 independent P-element lines that mapped by in situ hybridization to the region, 14 targeted 7 complementation groups within the 38 region. Additional EMS, X-ray, and spontaneous mutations define a total of 17 complementation groups. Because these two pools partially overlap, the completed analysis revealed 21 distinct complementation groups defined by point mutations. Seven additional functions were defined by trans-heterozygous combinations of deficiencies, resulting in a total of 28 distinct functions. We further produced a developmental expression profile for the 760 kb from 38B to 38E. Of 135 transcription units predicted by GENSCAN, 22 have at least partial homology to mobile genetic elements such as transposons and retroviruses and 17 correspond to previously characterized genes. We analyzed the developmental expression pattern of the remaining genes using poly(A)(+) RNA from ovaries, early and late embryos, larvae, males, and females. We discuss the correlation between GENSCAN predictions and experimentally confirmed transcription units, the high number of male-specific transcripts, and the alignment of the genetic and physical maps in cytological region 38.

Full Text

The Full Text of this article is available as a PDF (775.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Afshar K., Stuart B., Wasserman S. A. Functional analysis of the Drosophila diaphanous FH protein in early embryonic development. Development. 2000 May;127(9):1887–1897. doi: 10.1242/dev.127.9.1887. [DOI] [PubMed] [Google Scholar]
  3. Alphey L., Parker L., Hawcroft G., Guo Y., Kaiser K., Morgan G. KLP38B: a mitotic kinesin-related protein that binds PP1. J Cell Biol. 1997 Jul 28;138(2):395–409. doi: 10.1083/jcb.138.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  5. Arora K., Levine M. S., O'Connor M. B. The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in the Drosophila embryo. Genes Dev. 1994 Nov 1;8(21):2588–2601. doi: 10.1101/gad.8.21.2588. [DOI] [PubMed] [Google Scholar]
  6. Ashburner M., Misra S., Roote J., Lewis S. E., Blazej R., Davis T., Doyle C., Galle R., George R., Harris N. An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. Genetics. 1999 Sep;153(1):179–219. doi: 10.1093/genetics/153.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bhat M. A., Philp A. V., Glover D. M., Bellen H. J. Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with Topoisomerase II. Cell. 1996 Dec 13;87(6):1103–1114. doi: 10.1016/s0092-8674(00)81804-8. [DOI] [PubMed] [Google Scholar]
  8. Brittnacher J. G., Ganetzky B. On the Components of Segregation Distortion in DROSOPHILA MELANOGASTER. II. Deletion Mapping and Dosage Analysis of the SD Locus. Genetics. 1983 Apr;103(4):659–673. doi: 10.1093/genetics/103.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burge C., Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997 Apr 25;268(1):78–94. doi: 10.1006/jmbi.1997.0951. [DOI] [PubMed] [Google Scholar]
  10. Castrillon D. H., Gönczy P., Alexander S., Rawson R., Eberhart C. G., Viswanathan S., DiNardo S., Wasserman S. A. Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis. Genetics. 1993 Oct;135(2):489–505. doi: 10.1093/genetics/135.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Castrillon D. H., Wasserman S. A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development. 1994 Dec;120(12):3367–3377. doi: 10.1242/dev.120.12.3367. [DOI] [PubMed] [Google Scholar]
  12. Hirsh J., Davidson N. Isolation and characterization of the dopa decarboxylase gene of Drosophila melanogaster. Mol Cell Biol. 1981 Jun;1(6):475–485. doi: 10.1128/mcb.1.6.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Macdonald P. M., Struhl G. A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature. 1986 Dec 11;324(6097):537–545. doi: 10.1038/324537a0. [DOI] [PubMed] [Google Scholar]
  14. Manseau L. J., Schüpbach T. cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 1989 Sep;3(9):1437–1452. doi: 10.1101/gad.3.9.1437. [DOI] [PubMed] [Google Scholar]
  15. Merriam J., Ashburner M., Hartl D. L., Kafatos F. C. Toward cloning and mapping the genome of Drosophila. Science. 1991 Oct 11;254(5029):221–225. doi: 10.1126/science.254.5029.221. [DOI] [PubMed] [Google Scholar]
  16. Molina I., Baars S., Brill J. A., Hales K. G., Fuller M. T., Ripoll P. A chromatin-associated kinesin-related protein required for normal mitotic chromosome segregation in Drosophila. J Cell Biol. 1997 Dec 15;139(6):1361–1371. doi: 10.1083/jcb.139.6.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moore G. D., Sinclair D. A., Grigliatti T. A. Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER. Genetics. 1983 Oct;105(2):327–344. doi: 10.1093/genetics/105.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohkura H., Török T., Tick G., Hoheisel J., Kiss I., Glover D. M. Mutation of a gene for a Drosophila kinesin-like protein, Klp38B, leads to failure of cytokinesis. J Cell Sci. 1997 Apr;110(Pt 8):945–954. doi: 10.1242/jcs.110.8.945. [DOI] [PubMed] [Google Scholar]
  19. Rubin G. M. Around the genomes: the Drosophila genome project. Genome Res. 1996 Feb;6(2):71–79. doi: 10.1101/gr.6.2.71. [DOI] [PubMed] [Google Scholar]
  20. Rubin G. M., Hong L., Brokstein P., Evans-Holm M., Frise E., Stapleton M., Harvey D. A. A Drosophila complementary DNA resource. Science. 2000 Mar 24;287(5461):2222–2224. doi: 10.1126/science.287.5461.2222. [DOI] [PubMed] [Google Scholar]
  21. Schüpbach T., Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics. 1991 Dec;129(4):1119–1136. doi: 10.1093/genetics/129.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stathakis D. G., Pentz E. S., Freeman M. E., Kullman J., Hankins G. R., Pearlson N. J., Wright T. R. The genetic and molecular organization of the Dopa decarboxylase gene cluster of Drosophila melanogaster. Genetics. 1995 Oct;141(2):629–655. doi: 10.1093/genetics/141.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Suter B., Romberg L. M., Steward R. Bicaudal-D, a Drosophila gene involved in developmental asymmetry: localized transcript accumulation in ovaries and sequence similarity to myosin heavy chain tail domains. Genes Dev. 1989 Dec;3(12A):1957–1968. doi: 10.1101/gad.3.12a.1957. [DOI] [PubMed] [Google Scholar]
  25. Wellington A., Emmons S., James B., Calley J., Grover M., Tolias P., Manseau L. Spire contains actin binding domains and is related to ascidian posterior end mark-5. Development. 1999 Dec;126(23):5267–5274. doi: 10.1242/dev.126.23.5267. [DOI] [PubMed] [Google Scholar]
  26. Wright T. R., Hodgetts R. B., Sherald A. F. The genetics of dopa decarboxylase in Drosophila melanogaster. I. Isolation and characterization of deficiencies that delete the dopa-decarboxylase-dosage-sensitive region and the alpha-methyl-dopa-hypersensitive locus. Genetics. 1976 Oct;84(2):267–285. doi: 10.1093/genetics/84.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wustmann G., Szidonya J., Taubert H., Reuter G. The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol Gen Genet. 1989 Jun;217(2-3):520–527. doi: 10.1007/BF02464926. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES