Abstract
To study double-strand break (DSB)-induced mutations in mammalian chromosomes, we transfected thymidine kinase (tk)-deficient mouse fibroblasts with a DNA substrate containing a recognition site for yeast endonuclease I-SceI embedded within a functional tk gene. To introduce a genomic DSB, cells were electroporated with a plasmid expressing endonuclease I-SceI, and clones that had lost tk function were selected. Among 253 clones analyzed, 78% displayed small deletions or insertions of several nucleotides at the DSB site. Surprisingly, approximately 8% of recovered mutations involved the capture of one or more DNA fragments. Among 21 clones that had captured DNA, 10 harbored a specific segment of the I-SceI expression plasmid mapping between two replication origins on the plasmid. Four clones had captured a long terminal repeat sequence from an intracisternal A particle (an endogenous retrovirus-like sequence) and one had captured what appears to be a cDNA copy of a moderately repetitive B2 sequence. Additional clones displayed segments of the tk gene and/or microsatellite sequences copied into the DSB. This first systematic study of DNA capture at DSBs in a mammalian genome suggests that DSB repair may play a considerable role in the evolution of eukaryotic genomes.
Full Text
The Full Text of this article is available as a PDF (147.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beckman J. S., Weber J. L. Survey of human and rat microsatellites. Genomics. 1992 Apr;12(4):627–631. doi: 10.1016/0888-7543(92)90285-z. [DOI] [PubMed] [Google Scholar]
- Camerini-Otero R. D., Hsieh P. Homologous recombination proteins in prokaryotes and eukaryotes. Annu Rev Genet. 1995;29:509–552. doi: 10.1146/annurev.ge.29.120195.002453. [DOI] [PubMed] [Google Scholar]
- Choulika A., Perrin A., Dujon B., Nicolas J. F. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol. 1995 Apr;15(4):1968–1973. doi: 10.1128/mcb.15.4.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christy R. J., Brown A. R., Gourlie B. B., Huang R. C. Nucleotide sequences of murine intracisternal A-particle gene LTRs have extensive variability within the R region. Nucleic Acids Res. 1985 Jan 11;13(1):289–302. doi: 10.1093/nar/13.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derbyshire M. K., Epstein L. H., Young C. S., Munz P. L., Fishel R. Nonhomologous recombination in human cells. Mol Cell Biol. 1994 Jan;14(1):156–169. doi: 10.1128/mcb.14.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodwin T. J., Poulter R. T. Multiple LTR-retrotransposon families in the asexual yeast Candida albicans. Genome Res. 2000 Feb;10(2):174–191. doi: 10.1101/gr.10.2.174. [DOI] [PubMed] [Google Scholar]
- Haber J. E. Partners and pathwaysrepairing a double-strand break. Trends Genet. 2000 Jun;16(6):259–264. doi: 10.1016/s0168-9525(00)02022-9. [DOI] [PubMed] [Google Scholar]
- Huang L. C., Clarkin K. C., Wahl G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4827–4832. doi: 10.1073/pnas.93.10.4827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson S. P., Jeggo P. A. DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem Sci. 1995 Oct;20(10):412–415. doi: 10.1016/s0968-0004(00)89090-8. [DOI] [PubMed] [Google Scholar]
- Johnson R. D., Jasin M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 2000 Jul 3;19(13):3398–3407. doi: 10.1093/emboj/19.13.3398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jordan I. K., McDonald J. F. Comparative genomics and evolutionary dynamics of Saccharomyces cerevisiae Ty elements. Genetica. 1999;107(1-3):3–13. [PubMed] [Google Scholar]
- Kass D. H., Kim J., Rao A., Deininger P. L. Evolution of B2 repeats: the muroid explosion. Genetica. 1997;99(1):1–13. doi: 10.1007/BF02259494. [DOI] [PubMed] [Google Scholar]
- Kim J. M., Vanguri S., Boeke J. D., Gabriel A., Voytas D. F. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 1998 May;8(5):464–478. doi: 10.1101/gr.8.5.464. [DOI] [PubMed] [Google Scholar]
- Kirik A., Salomon S., Puchta H. Species-specific double-strand break repair and genome evolution in plants. EMBO J. 2000 Oct 16;19(20):5562–5566. doi: 10.1093/emboj/19.20.5562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer K. M., Brock J. A., Bloom K., Moore J. K., Haber J. E. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol. 1994 Feb;14(2):1293–1301. doi: 10.1128/mcb.14.2.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krayev A. S., Markusheva T. V., Kramerov D. A., Ryskov A. P., Skryabin K. G., Bayev A. A., Georgiev G. P. Ubiquitous transposon-like repeats B1 and B2 of the mouse genome: B2 sequencing. Nucleic Acids Res. 1982 Dec 11;10(23):7461–7475. doi: 10.1093/nar/10.23.7461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang F., Han M., Romanienko P. J., Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5172–5177. doi: 10.1073/pnas.95.9.5172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liao D., Pavelitz T., Weiner A. M. Characterization of a novel class of interspersed LTR elements in primate genomes: structure, genomic distribution, and evolution. J Mol Evol. 1998 Jun;46(6):649–660. doi: 10.1007/pl00006345. [DOI] [PubMed] [Google Scholar]
- Lin Y., Lukacsovich T., Waldman A. S. Multiple pathways for repair of DNA double-strand breaks in mammalian chromosomes. Mol Cell Biol. 1999 Dec;19(12):8353–8360. doi: 10.1128/mcb.19.12.8353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liskay R. M., Stachelek J. L., Letsou A. Homologous recombination between repeated chromosomal sequences in mouse cells. Cold Spring Harb Symp Quant Biol. 1984;49:183–189. doi: 10.1101/sqb.1984.049.01.021. [DOI] [PubMed] [Google Scholar]
- Lueders K. K., Kuff E. L. Sequences associated with intracisternal A particles are reiterated in the mouse genome. Cell. 1977 Dec;12(4):963–972. doi: 10.1016/0092-8674(77)90161-1. [DOI] [PubMed] [Google Scholar]
- Lukacsovich T., Yang D., Waldman A. S. Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. 1994 Dec 25;22(25):5649–5657. doi: 10.1093/nar/22.25.5649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore J. K., Haber J. E. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature. 1996 Oct 17;383(6601):644–646. doi: 10.1038/383644a0. [DOI] [PubMed] [Google Scholar]
- Moore J. K., Haber J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol. 1996 May;16(5):2164–2173. doi: 10.1128/mcb.16.5.2164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ricchetti M., Fairhead C., Dujon B. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature. 1999 Nov 4;402(6757):96–100. doi: 10.1038/47076. [DOI] [PubMed] [Google Scholar]
- Richardson C., Moynahan M. E., Jasin M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 1998 Dec 15;12(24):3831–3842. doi: 10.1101/gad.12.24.3831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth D. B., Wilson J. H. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol Cell Biol. 1986 Dec;6(12):4295–4304. doi: 10.1128/mcb.6.12.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouet P., Smih F., Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6064–6068. doi: 10.1073/pnas.91.13.6064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salomon S., Puchta H. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J. 1998 Oct 15;17(20):6086–6095. doi: 10.1093/emboj/17.20.6086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinohara A., Ogawa T. Homologous recombination and the roles of double-strand breaks. Trends Biochem Sci. 1995 Oct;20(10):387–391. doi: 10.1016/s0968-0004(00)89085-4. [DOI] [PubMed] [Google Scholar]
- Shiroishi T., Koide T., Yoshino M., Sagai T., Moriwaki K. Hotspots of homologous recombination in mouse meiosis. Adv Biophys. 1995;31:119–132. doi: 10.1016/0065-227x(95)99387-5. [DOI] [PubMed] [Google Scholar]
- Taghian D. G., Nickoloff J. A. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol Cell Biol. 1997 Nov;17(11):6386–6393. doi: 10.1128/mcb.17.11.6386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teng S. C., Kim B., Gabriel A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature. 1996 Oct 17;383(6601):641–644. doi: 10.1038/383641a0. [DOI] [PubMed] [Google Scholar]
- Tremblay A., Jasin M., Chartrand P. A double-strand break in a chromosomal LINE element can be repaired by gene conversion with various endogenous LINE elements in mouse cells. Mol Cell Biol. 2000 Jan;20(1):54–60. doi: 10.1128/mcb.20.1.54-60.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vamvakas S., Vock E. H., Lutz W. K. On the role of DNA double-strand breaks in toxicity and carcinogenesis. Crit Rev Toxicol. 1997 Mar;27(2):155–174. doi: 10.3109/10408449709021617. [DOI] [PubMed] [Google Scholar]
- Van de Water N., Williams R., Ockelford P., Browett P. A 20.7 kb deletion within the factor VIII gene associated with LINE-1 element insertion. Thromb Haemost. 1998 May;79(5):938–942. [PubMed] [Google Scholar]
- Wagner M. J., Sharp J. A., Summers W. C. Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1441–1445. doi: 10.1073/pnas.78.3.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu X., Gabriel A. Patching broken chromosomes with extranuclear cellular DNA. Mol Cell. 1999 Nov;4(5):873–881. doi: 10.1016/s1097-2765(00)80397-4. [DOI] [PubMed] [Google Scholar]