Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Genetics logoLink to Genetics
. 2001 Sep;159(1):279–290. doi: 10.1093/genetics/159.1.279

Alu insertion polymorphisms for the study of human genomic diversity.

A M Roy-Engel 1, M L Carroll 1, E Vogel 1, R K Garber 1, S V Nguyen 1, A H Salem 1, M A Batzer 1, P L Deininger 1
PMCID: PMC1461783  PMID: 11560904

Abstract

Genomic database mining has been a very useful aid in the identification and retrieval of recently integrated Alu elements from the human genome. We analyzed Alu elements retrieved from the GenBank database and identified two new Alu subfamilies, Alu Yb9 and Alu Yc2, and further characterized Yc1 subfamily members. Some members of each of the three subfamilies have inserted in the human genome so recently that about a one-third of the analyzed elements are polymorphic for the presence/absence of the Alu repeat in diverse human populations. These newly identified Alu insertion polymorphisms will serve as identical-by-descent genetic markers for the study of human evolution and forensics. Three previously classified Alu Y elements linked with disease belong to the Yc1 subfamily, supporting the retroposition potential of this subfamily and demonstrating that the Alu Y subfamily currently has a very low amplification rate in the human genome.

Full Text

The Full Text of this article is available as a PDF (122.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Batzer M. A., Gudi V. A., Mena J. C., Foltz D. W., Herrera R. J., Deininger P. L. Amplification dynamics of human-specific (HS) Alu family members. Nucleic Acids Res. 1991 Jul 11;19(13):3619–3623. doi: 10.1093/nar/19.13.3619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Batzer M. A., Stoneking M., Alegria-Hartman M., Bazan H., Kass D. H., Shaikh T. H., Novick G. E., Ioannou P. A., Scheer W. D., Herrera R. J. African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12288–12292. doi: 10.1073/pnas.91.25.12288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Comas D., Calafell F., Benchemsi N., Helal A., Lefranc G., Stoneking M., Batzer M. A., Bertranpetit J., Sajantila A. Alu insertion polymorphisms in NW Africa and the Iberian Peninsula: evidence for a strong genetic boundary through the Gibraltar Straits. Hum Genet. 2000 Oct;107(4):312–319. doi: 10.1007/s004390000370. [DOI] [PubMed] [Google Scholar]
  5. Deininger P. L., Batzer M. A. Alu repeats and human disease. Mol Genet Metab. 1999 Jul;67(3):183–193. doi: 10.1006/mgme.1999.2864. [DOI] [PubMed] [Google Scholar]
  6. Deininger P. L., Batzer M. A., Hutchison C. A., 3rd, Edgell M. H. Master genes in mammalian repetitive DNA amplification. Trends Genet. 1992 Sep;8(9):307–311. doi: 10.1016/0168-9525(92)90262-3. [DOI] [PubMed] [Google Scholar]
  7. Deininger P. L., Slagel V. K. Recently amplified Alu family members share a common parental Alu sequence. Mol Cell Biol. 1988 Oct;8(10):4566–4569. doi: 10.1128/mcb.8.10.4566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hammer M. F. A recent insertion of an alu element on the Y chromosome is a useful marker for human population studies. Mol Biol Evol. 1994 Sep;11(5):749–761. doi: 10.1093/oxfordjournals.molbev.a040155. [DOI] [PubMed] [Google Scholar]
  9. Jorde L. B., Watkins W. S., Bamshad M. J., Dixon M. E., Ricker C. E., Seielstad M. T., Batzer M. A. The distribution of human genetic diversity: a comparison of mitochondrial, autosomal, and Y-chromosome data. Am J Hum Genet. 2000 Mar;66(3):979–988. doi: 10.1086/302825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Labuda D., Striker G. Sequence conservation in Alu evolution. Nucleic Acids Res. 1989 Apr 11;17(7):2477–2491. doi: 10.1093/nar/17.7.2477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  12. Majumder P. P., Roy B., Banerjee S., Chakraborty M., Dey B., Mukherjee N., Roy M., Thakurta P. G., Sil S. K. Human-specific insertion/deletion polymorphisms in Indian populations and their possible evolutionary implications. Eur J Hum Genet. 1999 May-Jun;7(4):435–446. doi: 10.1038/sj.ejhg.5200317. [DOI] [PubMed] [Google Scholar]
  13. Miki Y., Katagiri T., Kasumi F., Yoshimoto T., Nakamura Y. Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet. 1996 Jun;13(2):245–247. doi: 10.1038/ng0696-245. [DOI] [PubMed] [Google Scholar]
  14. Miyamoto M. M., Slightom J. L., Goodman M. Phylogenetic relations of humans and African apes from DNA sequences in the psi eta-globin region. Science. 1987 Oct 16;238(4825):369–373. doi: 10.1126/science.3116671. [DOI] [PubMed] [Google Scholar]
  15. Perna N. T., Batzer M. A., Deininger P. L., Stoneking M. Alu insertion polymorphism: a new type of marker for human population studies. Hum Biol. 1992 Oct;64(5):641–648. [PubMed] [Google Scholar]
  16. Roy A. M., Carroll M. L., Kass D. H., Nguyen S. V., Salem A. H., Batzer M. A., Deininger P. L. Recently integrated human Alu repeats: finding needles in the haystack. Genetica. 1999;107(1-3):149–161. [PubMed] [Google Scholar]
  17. Roy A. M., Carroll M. L., Nguyen S. V., Salem A. H., Oldridge M., Wilkie A. O., Batzer M. A., Deininger P. L. Potential gene conversion and source genes for recently integrated Alu elements. Genome Res. 2000 Oct;10(10):1485–1495. doi: 10.1101/gr.152300. [DOI] [PubMed] [Google Scholar]
  18. Schmid C. W. Alu: structure, origin, evolution, significance and function of one-tenth of human DNA. Prog Nucleic Acid Res Mol Biol. 1996;53:283–319. doi: 10.1016/s0079-6603(08)60148-8. [DOI] [PubMed] [Google Scholar]
  19. Shen M. R., Batzer M. A., Deininger P. L. Evolution of the master Alu gene(s). J Mol Evol. 1991 Oct;33(4):311–320. doi: 10.1007/BF02102862. [DOI] [PubMed] [Google Scholar]
  20. Smit A. F. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev. 1996 Dec;6(6):743–748. doi: 10.1016/s0959-437x(96)80030-x. [DOI] [PubMed] [Google Scholar]
  21. Stoneking M., Fontius J. J., Clifford S. L., Soodyall H., Arcot S. S., Saha N., Jenkins T., Tahir M. A., Deininger P. L., Batzer M. A. Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa. Genome Res. 1997 Nov;7(11):1061–1071. doi: 10.1101/gr.7.11.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stoppa-Lyonnet D., Carter P. E., Meo T., Tosi M. Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1551–1555. doi: 10.1073/pnas.87.4.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tishkoff S. A., Ruano G., Kidd J. R., Kidd K. K. Distribution and frequency of a polymorphic Alu insertion at the plasminogen activator locus in humans. Hum Genet. 1996 Jun;97(6):759–764. doi: 10.1007/BF02346186. [DOI] [PubMed] [Google Scholar]
  24. Watkins W. S., Ricker C. E., Bamshad M. J., Carroll M. L., Nguyen S. V., Batzer M. A., Harpending H. C., Rogers A. R., Jorde L. B. Patterns of ancestral human diversity: an analysis of Alu-insertion and restriction-site polymorphisms. Am J Hum Genet. 2001 Feb 15;68(3):738–752. doi: 10.1086/318793. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES