Skip to main content
Genetics logoLink to Genetics
. 2001 Sep;159(1):7–15. doi: 10.1093/genetics/159.1.7

Recombinogenic activity of chimeric recA genes (Pseudomonas aeruginosa/Escherichia coli): a search for RecA protein regions responsible for this activity.

I V Bakhlanova 1, T Ogawa 1, V A Lanzov 1
PMCID: PMC1461784  PMID: 11560883

Abstract

In the background of weak, if any, constitutive SOS function, RecA from Pseudomonas aeruginosa (RecAPa) shows a higher frequency of recombination exchange (FRE) per DNA unit length as compared to RecA from Escherichia coli (RecAEc). To understand the molecular basis for this observation and to determine which regions of the RecAPa polypeptide are responsible for this unusual activity, we analyzed recAX chimeras between the recAEc and recAPa genes. We chose 31 previously described recombination- and repair-proficient recAX hybrids and determined their FRE calculated from linkage frequency data and constitutive SOS function expression as measured by using the lacZ gene under control of an SOS-regulated promoter. Relative to recAEc, the FRE of recAPa was 6.5 times greater; the relative alterations of FRE for recAX genes varied from approximately 0.6 to 9.0. No quantitative correlation between the FRE increase and constitutive SOS function was observed. Single ([L29M] or [I102D]), double ([G136N, V142I]), and multiple substitutions in related pairs of chimeric RecAX proteins significantly altered their relative FRE values. The residue content of three separate regions within the N-terminal and central but not the C-terminal protein domains within the RecA molecule also influenced the FRE values. Critical amino acids in these regions were located close to previously identified sequences that comprise the two surfaces for subunit interactions in the RecA polymer. We suggest that the intensity of the interactions between the subunits is a key factor in determining the FRE promoted by RecA in vivo.

Full Text

The Full Text of this article is available as a PDF (252.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELBERG E. A., BURNS S. N. Genetic variation in the sex factor of Escherichia coli. J Bacteriol. 1960 Mar;79:321–330. doi: 10.1128/jb.79.3.321-330.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bresler S. E., Krivonogov S. V., Lanzov V. A. Scale of the genetic map and genetic control of recombination after conjugation in Escherichia coli K-12. Mol Gen Genet. 1978 Nov 9;166(3):337–346. doi: 10.1007/BF00267627. [DOI] [PubMed] [Google Scholar]
  3. Cazaux C., Mazard A. M., Defais M. Inducibility of the SOS response in a recA730 or recA441 strain is restored by transformation with a new recA allele. Mol Gen Genet. 1993 Aug;240(2):296–301. doi: 10.1007/BF00277070. [DOI] [PubMed] [Google Scholar]
  4. Cox M. M. Alignment of 3 (but not 4) DNA strands within a RecA protein filament. J Biol Chem. 1995 Nov 3;270(44):26021–26024. doi: 10.1074/jbc.270.44.26021. [DOI] [PubMed] [Google Scholar]
  5. Horii T., Ogawa T., Ogawa H. Organization of the recA gene of Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jan;77(1):313–317. doi: 10.1073/pnas.77.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lanzov V., Stepanova I., Vinogradskaja G. Genetic control of recombination exchange frequency in Escherichia coli K-12. Biochimie. 1991 Feb-Mar;73(2-3):305–312. doi: 10.1016/0300-9084(91)90217-o. [DOI] [PubMed] [Google Scholar]
  8. Lavery P. E., Kowalczykowski S. C. Properties of recA441 protein-catalyzed DNA strand exchange can be attributed to an enhanced ability to compete with SSB protein. J Biol Chem. 1990 Mar 5;265(7):4004–4010. [PubMed] [Google Scholar]
  9. Lloyd R. G. Hyper-recombination in Escherichia coli K-12 mutants constitutive for protein X synthesis. J Bacteriol. 1978 Jun;134(3):929–935. doi: 10.1128/jb.134.3.929-935.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Namsaraev E. A., Baitin D., Bakhlanova I. V., Alexseyev A. A., Ogawa H., Lanzov V. A. Biochemical basis of hyper-recombinogenic activity of Pseudomonas aeruginosa RecA protein in Escherichia coli cells. Mol Microbiol. 1998 Feb;27(4):727–738. doi: 10.1046/j.1365-2958.1998.00718.x. [DOI] [PubMed] [Google Scholar]
  11. Ogawa T., Shinohara A., Ogawa H., Tomizawa J. Functional structures of the recA protein found by chimera analysis. J Mol Biol. 1992 Aug 5;226(3):651–660. doi: 10.1016/0022-2836(92)90622-q. [DOI] [PubMed] [Google Scholar]
  12. Petukhov M., Kil Y., Kuramitsu S., Lanzov V. Insights into thermal resistance of proteins from the intrinsic stability of their alpha-helices. Proteins. 1997 Nov;29(3):309–320. doi: 10.1002/(sici)1097-0134(199711)29:3<309::aid-prot5>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  13. Rehrauer W. M., Lavery P. E., Palmer E. L., Singh R. N., Kowalczykowski S. C. Interaction of Escherichia coli RecA protein with LexA repressor. I. LexA repressor cleavage is competitive with binding of a secondary DNA molecule. J Biol Chem. 1996 Sep 27;271(39):23865–23873. [PubMed] [Google Scholar]
  14. Rudd K. E. Linkage map of Escherichia coli K-12, edition 10: the physical map. Microbiol Mol Biol Rev. 1998 Sep;62(3):985–1019. doi: 10.1128/mmbr.62.3.985-1019.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sano Y., Kageyama M. The sequence and function of the recA gene and its protein in Pseudomonas aeruginosa PAO. Mol Gen Genet. 1987 Jul;208(3):412–419. doi: 10.1007/BF00328132. [DOI] [PubMed] [Google Scholar]
  16. Story R. M., Weber I. T., Steitz T. A. The structure of the E. coli recA protein monomer and polymer. Nature. 1992 Jan 23;355(6358):318–325. doi: 10.1038/355318a0. [DOI] [PubMed] [Google Scholar]
  17. Tessman E. S., Peterson P. Plaque color method for rapid isolation of novel recA mutants of Escherichia coli K-12: new classes of protease-constitutive recA mutants. J Bacteriol. 1985 Aug;163(2):677–687. doi: 10.1128/jb.163.2.677-687.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zaitsev E. N., Kowalczykowski S. C. Essential monomer-monomer contacts define the minimal length for the N-terminus of RecA protein. Mol Microbiol. 1998 Sep;29(5):1317–1318. doi: 10.1046/j.1365-2958.1998.01006.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES