Skip to main content
Genetics logoLink to Genetics
. 2001 Sep;159(1):359–370. doi: 10.1093/genetics/159.1.359

Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds.

D J Kliebenstein 1, J Gershenzon 1, T Mitchell-Olds 1
PMCID: PMC1461795  PMID: 11560911

Abstract

Secondary metabolites are a diverse set of plant compounds believed to have numerous functions in plant-environment interactions. Despite this importance, little is known about the regulation of secondary metabolite accumulation. We are studying the regulation of glucosinolates, a large group of secondary metabolites, in Arabidopsis to investigate how secondary metabolism is controlled. We utilized Ler and Cvi, two ecotypes of Arabidopsis that have striking differences in both the types and amounts of glucosinolates that accumulate in the seeds and leaves. QTL analysis identified six loci determining total aliphatic glucosinolate accumulation, six loci controlling total indolic glucosinolate concentration, and three loci regulating benzylic glucosinolate levels. Our results show that two of the loci controlling total aliphatic glucosinolates map to biosynthetic loci that interact epistatically to regulate aliphatic glucosinolate accumulation. In addition to the six loci regulating total indolic glucosinolate concentration, mapping of QTL for the individual indolic glucosinolates identified five additional loci that were specific to subsets of the indolic glucosinolates. These data show that there are a large number of variable loci controlling glucosinolate accumulation in Arabidopsis thaliana.

Full Text

The Full Text of this article is available as a PDF (245.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso-Blanco C., Blankestijn-de Vries H., Hanhart C. J., Koornneef M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4710–4717. doi: 10.1073/pnas.96.8.4710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Graser G., Schneider B., Oldham N. J., Gershenzon J. The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae). Arch Biochem Biophys. 2000 Jun 15;378(2):411–419. doi: 10.1006/abbi.2000.1812. [DOI] [PubMed] [Google Scholar]
  3. Kahn R. A., Fahrendorf T., Halkier B. A., Møller B. L. Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch Biochem Biophys. 1999 Mar 1;363(1):9–18. doi: 10.1006/abbi.1998.1068. [DOI] [PubMed] [Google Scholar]
  4. Kliebenstein D. J., Kroymann J., Brown P., Figuth A., Pedersen D., Gershenzon J., Mitchell-Olds T. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 2001 Jun;126(2):811–825. doi: 10.1104/pp.126.2.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kliebenstein D. J., Lambrix V. M., Reichelt M., Gershenzon J., Mitchell-Olds T. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell. 2001 Mar;13(3):681–693. doi: 10.1105/tpc.13.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  7. Verhoeven D. T., Verhagen H., Goldbohm R. A., van den Brandt P. A., van Poppel G. A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem Biol Interact. 1997 Feb 28;103(2):79–129. doi: 10.1016/s0009-2797(96)03745-3. [DOI] [PubMed] [Google Scholar]
  8. Wittstock U., Halkier B. A. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem. 2000 May 12;275(19):14659–14666. doi: 10.1074/jbc.275.19.14659. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES