Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Oct 15;24(20):4094–4095. doi: 10.1093/nar/24.20.4094

Genomic analysis of human multigene families using chromosome-specific vectorette PCR.

T P Moynihan 1, A F Markham 1, P A Robinson 1
PMCID: PMC146180  PMID: 8918818

Abstract

We report a technique for the rapid determination of genomic structure of individual members of human interspersed multigene families which circumvents the requirement for genomic clone isolation. In this approach, vectorette libraries were constructed from human/rodent somatic cell hybrid DNA harbouring single members of the gene family. Using these libraries as PCR templates with nested gene-specific primers in combination with a common vectorette primer resulted in the amplification of gene-specific products suitable for the subsequent determination of intron/exon structure. We have applied this technique to characterise members of two gene families.

Full Text

The Full Text of this article is available as a PDF (37.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold C., Hodgson I. J. Vectorette PCR: a novel approach to genomic walking. PCR Methods Appl. 1991 Aug;1(1):39–42. doi: 10.1101/gr.1.1.39. [DOI] [PubMed] [Google Scholar]
  2. Chou Q., Russell M., Birch D. E., Raymond J., Bloch W. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 1992 Apr 11;20(7):1717–1723. doi: 10.1093/nar/20.7.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dyer K. D., Rosenberg H. F. Isolation of homologous gene sequences by vectorette cloning. Biotechniques. 1995 Oct;19(4):550–552. [PubMed] [Google Scholar]
  4. Levy-Lahad E., Wasco W., Poorkaj P., Romano D. M., Oshima J., Pettingell W. H., Yu C. E., Jondro P. D., Schmidt S. D., Wang K. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science. 1995 Aug 18;269(5226):973–977. doi: 10.1126/science.7638622. [DOI] [PubMed] [Google Scholar]
  5. Moynihan T. P., Ardley H. C., Leek J. P., Thompson J., Brindle N. S., Markham A. F., Robinson P. A. Characterization of a human ubiquitin-conjugating enzyme gene UBE2L3. Mamm Genome. 1996 Jul;7(7):520–525. doi: 10.1007/s003359900155. [DOI] [PubMed] [Google Scholar]
  6. Riley J., Butler R., Ogilvie D., Finniear R., Jenner D., Powell S., Anand R., Smith J. C., Markham A. F. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 1990 May 25;18(10):2887–2890. doi: 10.1093/nar/18.10.2887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Roberts R. G., Coffey A. J., Bobrow M., Bentley D. R. Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. Genomics. 1992 Aug;13(4):942–950. doi: 10.1016/0888-7543(92)90005-d. [DOI] [PubMed] [Google Scholar]
  8. Robinson P. A., Leek J. P., Thompson J., Carr I. M., Bailey A., Moynihan T. P., Coletta P. L., Lench N. J., Markham A. F. A human ubiquitin conjugating enzyme, L-UBC, maps in the Alzheimer's disease locus on chromosome 14q24.3. Mamm Genome. 1995 Oct;6(10):725–731. doi: 10.1007/BF00354295. [DOI] [PubMed] [Google Scholar]
  9. Schoenmakers E. F., Mols R., Wanschura S., Kools P. F., Geurts J. M., Bartnitzke S., Bullerdiek J., van den Berghe H., Van de Ven W. J. Identification, molecular cloning, and characterization of the chromosome 12 breakpoint cluster region of uterine leiomyomas. Genes Chromosomes Cancer. 1994 Oct;11(2):106–118. doi: 10.1002/gcc.2870110207. [DOI] [PubMed] [Google Scholar]
  10. Sherrington R., Rogaev E. I., Liang Y., Rogaeva E. A., Levesque G., Ikeda M., Chi H., Lin C., Li G., Holman K. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 1995 Jun 29;375(6534):754–760. doi: 10.1038/375754a0. [DOI] [PubMed] [Google Scholar]
  11. Will K., Dörk T., Stuhrmann M., Meitinger T., Bertele-Harms R., Tümmler B., Schmidtke J. A novel exon in the cystic fibrosis transmembrane conductance regulator gene activated by the nonsense mutation E92X in airway epithelial cells of patients with cystic fibrosis. J Clin Invest. 1994 Apr;93(4):1852–1859. doi: 10.1172/JCI117172. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES