Abstract
A two-locus model of reversible mutations with compensatory fitness interactions is presented; single mutations are assumed to be deleterious but neutral in appropriate combinations. The expectation of the time of compensatory nucleotide substitutions is calculated analytically for the case of tight linkage between sites. It is shown that selection increases the substitution time dramatically when selection intensity Ns > 1, where N is the diploid population size and s the selection coefficient. Computer simulations demonstrate that recombination increases the substitution time, but the effect of recombination is small when selection is weak. The amount of linkage disequilibrium generated in the process of compensatory substitution is also investigated. It is shown that significant linkage disequilibrium is expected to be rare in natural populations. The model is applied to the mRNA secondary structure of the bicoid 3' untranslated region of Drosophila. It is concluded that average selection intensity Ns against single deleterious mutations is not likely to be much larger than 1.
Full Text
The Full Text of this article is available as a PDF (156.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics. 1995 Feb;139(2):1067–1076. doi: 10.1093/genetics/139.2.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christiansen F. B., Otto S. P., Bergman A., Feldman M. W. Waiting with and without recombination: the time to production of a double mutant. Theor Popul Biol. 1998 Jun;53(3):199–215. doi: 10.1006/tpbi.1997.1358. [DOI] [PubMed] [Google Scholar]
- Ferrandon D., Koch I., Westhof E., Nüsslein-Volhard C. RNA-RNA interaction is required for the formation of specific bicoid mRNA 3' UTR-STAUFEN ribonucleoprotein particles. EMBO J. 1997 Apr 1;16(7):1751–1758. doi: 10.1093/emboj/16.7.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgs P. G. RNA secondary structure: physical and computational aspects. Q Rev Biophys. 2000 Aug;33(3):199–253. doi: 10.1017/s0033583500003620. [DOI] [PubMed] [Google Scholar]
- KIMURA M. On the probability of fixation of mutant genes in a population. Genetics. 1962 Jun;47:713–719. doi: 10.1093/genetics/47.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Ohta T. The Average Number of Generations until Fixation of a Mutant Gene in a Finite Population. Genetics. 1969 Mar;61(3):763–771. doi: 10.1093/genetics/61.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Takahata N. Selective constraint in protein polymorphism: study of the effectively neutral mutation model by using an improved pseudosampling method. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1048–1052. doi: 10.1073/pnas.80.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirby D. A., Muse S. V., Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9047–9051. doi: 10.1073/pnas.92.20.9047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald P. M. bicoid mRNA localization signal: phylogenetic conservation of function and RNA secondary structure. Development. 1990 Sep;110(1):161–171. doi: 10.1242/dev.110.1.161. [DOI] [PubMed] [Google Scholar]
- Muse S. V. Evolutionary analyses of DNA sequences subject to constraints of secondary structure. Genetics. 1995 Mar;139(3):1429–1439. doi: 10.1093/genetics/139.3.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsch J., Braverman J. M., Stephan W. Comparative sequence analysis and patterns of covariation in RNA secondary structures. Genetics. 2000 Feb;154(2):909–921. doi: 10.1093/genetics/154.2.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rousset F., Pélandakis M., Solignac M. Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10032–10036. doi: 10.1073/pnas.88.22.10032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rzhetsky A. Estimating substitution rates in ribosomal RNA genes. Genetics. 1995 Oct;141(2):771–783. doi: 10.1093/genetics/141.2.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savill N. J., Hoyle D. C., Higgs P. G. RNA sequence evolution with secondary structure constraints: comparison of substitution rate models using maximum-likelihood methods. Genetics. 2001 Jan;157(1):399–411. doi: 10.1093/genetics/157.1.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaeffer S. W., Miller E. L. Estimates of linkage disequilibrium and the recombination parameter determined from segregating nucleotide sites in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics. 1993 Oct;135(2):541–552. doi: 10.1093/genetics/135.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schöniger M., von Haeseler A. A stochastic model for the evolution of autocorrelated DNA sequences. Mol Phylogenet Evol. 1994 Sep;3(3):240–247. doi: 10.1006/mpev.1994.1026. [DOI] [PubMed] [Google Scholar]
- Seeger M. A., Kaufman T. C. Molecular analysis of the bicoid gene from Drosophila pseudoobscura: identification of conserved domains within coding and noncoding regions of the bicoid mRNA. EMBO J. 1990 Sep;9(9):2977–2987. doi: 10.1002/j.1460-2075.1990.tb07490.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephan W., Kirby D. A. RNA folding in Drosophila shows a distance effect for compensatory fitness interactions. Genetics. 1993 Sep;135(1):97–103. doi: 10.1093/genetics/135.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]