Skip to main content
Genetics logoLink to Genetics
. 2001 Sep;159(1):147–157. doi: 10.1093/genetics/159.1.147

Regulation of physiological rates in Caenorhabditis elegans by a tRNA-modifying enzyme in the mitochondria.

J Lemieux 1, B Lakowski 1, A Webb 1, Y Meng 1, A Ubach 1, F Bussière 1, T Barnes 1, S Hekimi 1
PMCID: PMC1461807  PMID: 11560893

Abstract

We show that the phenotype associated with gro-1(e2400) comprises the whole suite of features that characterize the phenotype of the clk mutants in Caenorhabditis elegans, including deregulated developmental, behavioral, and reproductive rates, as well as increased life span and a maternal effect. We cloned gro-1 and found that it encodes a highly conserved cellular enzyme, isopentenylpyrophosphate:tRNA transferase (IPT), which modifies a subset of tRNAs. In yeast, two forms of the enzyme are produced by alternative translation initiation, one of which is mitochondrial. In the gro-1 transcript there are also two possible initiator ATGs, between which there is a sequence predicted to encode a mitochondrial localization signal. A functional GRO-1::GFP fusion protein is localized diffusely throughout the cytoplasm and nucleus. A GRO-1::GFP initiated from the first methionine is localized exclusively to the mitochondria and rescues the mutant phenotype. In contrast, a protein initiated from the second methionine is localized diffusely throughout the cell and does not rescue the mutant phenotype. As oxygen consumption and ATP concentration have been reported to be unaffected in gro-1 mutants, our observations suggest that GRO-1 acts in mitochondria and regulates global physiology by unknown mechanisms.

Full Text

The Full Text of this article is available as a PDF (398.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amuthan G., Biswas G., Zhang S. Y., Klein-Szanto A., Vijayasarathy C., Avadhani N. G. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J. 2001 Apr 17;20(8):1910–1920. doi: 10.1093/emboj/20.8.1910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biswas G., Adebanjo O. A., Freedman B. D., Anandatheerthavarada H. K., Vijayasarathy C., Zaidi M., Kotlikoff M., Avadhani N. G. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J. 1999 Feb 1;18(3):522–533. doi: 10.1093/emboj/18.3.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blum P. H. Reduced leu operon expression in a miaA mutant of Salmonella typhimurium. J Bacteriol. 1988 Nov;170(11):5125–5133. doi: 10.1128/jb.170.11.5125-5133.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boguta M., Hunter L. A., Shen W. C., Gillman E. C., Martin N. C., Hopper A. K. Subcellular locations of MOD5 proteins: mapping of sequences sufficient for targeting to mitochondria and demonstration that mitochondrial and nuclear isoforms commingle in the cytosol. Mol Cell Biol. 1994 Apr;14(4):2298–2306. doi: 10.1128/mcb.14.4.2298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Branicky R., Bénard C., Hekimi S. clk-1, mitochondria, and physiological rates. Bioessays. 2000 Jan;22(1):48–56. doi: 10.1002/(SICI)1521-1878(200001)22:1<48::AID-BIES9>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  6. Caillet J., Droogmans L. Molecular cloning of the Escherichia coli miaA gene involved in the formation of delta 2-isopentenyl adenosine in tRNA. J Bacteriol. 1988 Sep;170(9):4147–4152. doi: 10.1128/jb.170.9.4147-4152.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Connolly D. M., Winkler M. E. Genetic and physiological relationships among the miaA gene, 2-methylthio-N6-(delta 2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12. J Bacteriol. 1989 Jun;171(6):3233–3246. doi: 10.1128/jb.171.6.3233-3246.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diaz I., Pedersen S., Kurland C. G. Effects of miaA on translation and growth rates. Mol Gen Genet. 1987 Jul;208(3):373–376. doi: 10.1007/BF00328126. [DOI] [PubMed] [Google Scholar]
  9. Dihanich M. E., Najarian D., Clark R., Gillman E. C., Martin N. C., Hopper A. K. Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Mol Cell Biol. 1987 Jan;7(1):177–184. doi: 10.1128/mcb.7.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ericson J. U., Björk G. R. Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2. J Bacteriol. 1986 Jun;166(3):1013–1021. doi: 10.1128/jb.166.3.1013-1021.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ewbank J. J., Barnes T. M., Lakowski B., Lussier M., Bussey H., Hekimi S. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science. 1997 Feb 14;275(5302):980–983. doi: 10.1126/science.275.5302.980. [DOI] [PubMed] [Google Scholar]
  12. Felkai S., Ewbank J. J., Lemieux J., Labbé J. C., Brown G. G., Hekimi S. CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J. 1999 Apr 1;18(7):1783–1792. doi: 10.1093/emboj/18.7.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frolov M. V., Benevolenskaya E. V., Birchler J. A. The oxen gene of Drosophila encodes a homolog of subunit 9 of yeast ubiquinol-cytochrome c oxidoreductase complex: evidence for modulation of gene expression in response to mitochondrial activity. Genetics. 2000 Dec;156(4):1727–1736. doi: 10.1093/genetics/156.4.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gillman E. C., Slusher L. B., Martin N. C., Hopper A. K. MOD5 translation initiation sites determine N6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA. Mol Cell Biol. 1991 May;11(5):2382–2390. doi: 10.1128/mcb.11.5.2382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Golovko A., Hjälm G., Sitbon F., Nicander B. Cloning of a human tRNA isopentenyl transferase. Gene. 2000 Nov 27;258(1-2):85–93. doi: 10.1016/s0378-1119(00)00421-2. [DOI] [PubMed] [Google Scholar]
  17. Gray J., Wang J., Gelvin S. B. Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression. J Bacteriol. 1992 Feb;174(4):1086–1098. doi: 10.1128/jb.174.4.1086-1098.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hekimi S., Boutis P., Lakowski B. Viable maternal-effect mutations that affect the development of the nematode Caenorhabditis elegans. Genetics. 1995 Dec;141(4):1351–1364. doi: 10.1093/genetics/141.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hekimi S. Crossroads of aging in the nematode Caenorhabditis elegans. Results Probl Cell Differ. 2000;29:81–112. doi: 10.1007/978-3-540-48003-7_5. [DOI] [PubMed] [Google Scholar]
  20. Hekimi S., Lakowski B., Barnes T. M., Ewbank J. J. Molecular genetics of life span in C. elegans: how much does it teach us? Trends Genet. 1998 Jan;14(1):14–20. doi: 10.1016/S0168-9525(97)01299-7. [DOI] [PubMed] [Google Scholar]
  21. Hodgkin J., Doniach T. Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics. 1997 May;146(1):149–164. doi: 10.1093/genetics/146.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huang X. Y., Hirsh D. A second trans-spliced RNA leader sequence in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8640–8644. doi: 10.1073/pnas.86.22.8640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jonassen T., Larsen P. L., Clarke C. F. A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans clk-1 mutants. Proc Natl Acad Sci U S A. 2001 Jan 2;98(2):421–426. doi: 10.1073/pnas.021337498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keddie E. M., Higazi T., Unnasch T. R. The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol. 1998 Sep 1;95(1):111–127. doi: 10.1016/s0166-6851(98)00102-9. [DOI] [PubMed] [Google Scholar]
  25. Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993 Dec 2;366(6454):461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
  26. Lakowski B., Hekimi S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science. 1996 May 17;272(5264):1010–1013. doi: 10.1126/science.272.5264.1010. [DOI] [PubMed] [Google Scholar]
  27. Leung H. C., Chen Y., Winkler M. E. Regulation of substrate recognition by the MiaA tRNA prenyltransferase modification enzyme of Escherichia coli K-12. J Biol Chem. 1997 May 16;272(20):13073–13083. doi: 10.1074/jbc.272.20.13073. [DOI] [PubMed] [Google Scholar]
  28. Miyadera H., Amino H., Hiraishi A., Taka H., Murayama K., Miyoshi H., Sakamoto K., Ishii N., Hekimi S., Kita K. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem. 2001 Jan 17;276(11):7713–7716. doi: 10.1074/jbc.C000889200. [DOI] [PubMed] [Google Scholar]
  29. Noskov V. N., Staak K., Shcherbakova P. V., Kozmin S. G., Negishi K., Ono B. C., Hayatsu H., Pavlov Y. I. HAM1, the gene controlling 6-N-hydroxylaminopurine sensitivity and mutagenesis in the yeast Saccharomyces cerevisiae. Yeast. 1996 Jan;12(1):17–29. doi: 10.1002/(SICI)1097-0061(199601)12:1%3C17::AID-YEA875%3E3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  30. Sekito T., Thornton J., Butow R. A. Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell. 2000 Jun;11(6):2103–2115. doi: 10.1091/mbc.11.6.2103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stanford D. R., Martin N. C., Hopper A. K. ADEPTs: information necessary for subcellular distribution of eukaryotic sorting isozymes resides in domains missing from eubacterial and archaeal counterparts. Nucleic Acids Res. 2000 Jan 15;28(2):383–392. doi: 10.1093/nar/28.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wong A., Boutis P., Hekimi S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics. 1995 Mar;139(3):1247–1259. doi: 10.1093/genetics/139.3.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zorio D. A., Cheng N. N., Blumenthal T., Spieth J. Operons as a common form of chromosomal organization in C. elegans. Nature. 1994 Nov 17;372(6503):270–272. doi: 10.1038/372270a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES