Skip to main content
Genetics logoLink to Genetics
. 2001 Sep;159(1):229–240. doi: 10.1093/genetics/159.1.229

Genetic analysis of functional domains within the Drosophila LARK RNA-binding protein.

G P McNeil 1, A J Schroeder 1, M A Roberts 1, F R Jackson 1
PMCID: PMC1461808  PMID: 11560900

Abstract

LARK is an essential Drosophila RNA-binding protein of the RNA recognition motif (RRM) class that functions during embryonic development and for the circadian regulation of adult eclosion. LARK protein contains three consensus RNA-binding domains: two RRM domains and a retroviral-type zinc finger (RTZF). To show that these three structural domains are required for function, we performed a site-directed mutagenesis of the protein. The analysis of various mutations, in vivo, indicates that the RRM domains and the RTZF are required for wild-type LARK functions. RRM1 and RRM2 are essential for viability, although interestingly either domain can suffice for this function. Remarkably, mutation of either RRM2 or the RTZF results in the same spectrum of phenotypes: mutants exhibit reduced viability, abnormal wing and mechanosensory bristle morphology, female sterility, and flightlessness. The severity of these phenotypes is similar in single mutants and double RRM2; RTZF mutants, indicating a lack of additivity for the mutations and suggesting that RRM2 and the RTZF act together, in vivo, to determine LARK function. Finally, we show that mutations in RRM1, RRM2, or the RTZF do not affect the circadian regulation of eclosion, and we discuss possible interpretations of these results. This genetic analysis demonstrates that each of the LARK structural domains functions in vivo and indicates a pleiotropic requirement for both the LARK RRM2 and RTZF domains.

Full Text

The Full Text of this article is available as a PDF (481.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrizabalaga G., Lehmann R. A selective screen reveals discrete functional domains in Drosophila Nanos. Genetics. 1999 Dec;153(4):1825–1838. doi: 10.1093/genetics/153.4.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bai C., Tolias P. P. Drosophila clipper/CPSF 30K is a post-transcriptionally regulated nuclear protein that binds RNA containing GC clusters. Nucleic Acids Res. 1998 Apr 1;26(7):1597–1604. doi: 10.1093/nar/26.7.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  4. Burd C. G., Matunis E. L., Dreyfuss G. The multiple RNA-binding domains of the mRNA poly(A)-binding protein have different RNA-binding activities. Mol Cell Biol. 1991 Jul;11(7):3419–3424. doi: 10.1128/mcb.11.7.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavaloc Y., Bourgeois C. F., Kister L., Stévenin J. The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers. RNA. 1999 Mar;5(3):468–483. doi: 10.1017/s1355838299981967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Copeland T. D., Morgan M. A., Oroszlan S. Complete amino acid sequence of the nucleic acid-binding protein of bovine leukemia virus. FEBS Lett. 1983 May 30;156(1):37–40. doi: 10.1016/0014-5793(83)80243-9. [DOI] [PubMed] [Google Scholar]
  7. Cáceres J. F., Krainer A. R. Functional analysis of pre-mRNA splicing factor SF2/ASF structural domains. EMBO J. 1993 Dec;12(12):4715–4726. doi: 10.1002/j.1460-2075.1993.tb06160.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drummond D. R., Hennessey E. S., Sparrow J. C. Characterisation of missense mutations in the Act88F gene of Drosophila melanogaster. Mol Gen Genet. 1991 Apr;226(1-2):70–80. doi: 10.1007/BF00273589. [DOI] [PubMed] [Google Scholar]
  9. Ewer J., Truman J. W. Increases in cyclic 3', 5'-guanosine monophosphate (cGMP) occur at ecdysis in an evolutionarily conserved crustacean cardioactive peptide-immunoreactive insect neuronal network. J Comp Neurol. 1996 Jul 1;370(3):330–341. doi: 10.1002/(SICI)1096-9861(19960701)370:3<330::AID-CNE4>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  10. Gammie S. C., Truman J. W. Eclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior. J Exp Biol. 1999 Feb;202(Pt 4):343–352. doi: 10.1242/jeb.202.4.343. [DOI] [PubMed] [Google Scholar]
  11. Handa N., Nureki O., Kurimoto K., Kim I., Sakamoto H., Shimura Y., Muto Y., Yokoyama S. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature. 1999 Apr 15;398(6728):579–585. doi: 10.1038/19242. [DOI] [PubMed] [Google Scholar]
  12. Jessen T. H., Oubridge C., Teo C. H., Pritchard C., Nagai K. Identification of molecular contacts between the U1 A small nuclear ribonucleoprotein and U1 RNA. EMBO J. 1991 Nov;10(11):3447–3456. doi: 10.1002/j.1460-2075.1991.tb04909.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kanaar R., Lee A. L., Rudner D. Z., Wemmer D. E., Rio D. C. Interaction of the sex-lethal RNA binding domains with RNA. EMBO J. 1995 Sep 15;14(18):4530–4539. doi: 10.1002/j.1460-2075.1995.tb00132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kenan D. J., Query C. C., Keene J. D. RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci. 1991 Jun;16(6):214–220. doi: 10.1016/0968-0004(91)90088-d. [DOI] [PubMed] [Google Scholar]
  15. Li H., Bingham P. M. Arginine/serine-rich domains of the su(wa) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing. Cell. 1991 Oct 18;67(2):335–342. doi: 10.1016/0092-8674(91)90185-2. [DOI] [PubMed] [Google Scholar]
  16. Lisbin M. J., Gordon M., Yannoni Y. M., White K. Function of RRM domains of Drosophila melanogaster ELAV: Rnp1 mutations and rrm domain replacements with ELAV family proteins and SXL. Genetics. 2000 Aug;155(4):1789–1798. doi: 10.1093/genetics/155.4.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mayeda A., Munroe S. H., Xu R. M., Krainer A. R. Distinct functions of the closely related tandem RNA-recognition motifs of hnRNP A1. RNA. 1998 Sep;4(9):1111–1123. doi: 10.1017/s135583829898089x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McNeil G. P., Zhang X., Genova G., Jackson F. R. A molecular rhythm mediating circadian clock output in Drosophila. Neuron. 1998 Feb;20(2):297–303. doi: 10.1016/s0896-6273(00)80457-2. [DOI] [PubMed] [Google Scholar]
  19. McNeil G. P., Zhang X., Roberts M., Jackson F. R. Maternal function of a retroviral-type zinc-finger protein is essential for Drosophila development. Dev Genet. 1999;25(4):387–396. doi: 10.1002/(SICI)1520-6408(1999)25:4<387::AID-DVG12>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  20. Nelson H. B., Heiman R. G., Bolduc C., Kovalick G. E., Whitley P., Stern M., Beckingham K. Calmodulin point mutations affect Drosophila development and behavior. Genetics. 1997 Dec;147(4):1783–1798. doi: 10.1093/genetics/147.4.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Newby L. M., Jackson F. R. Regulation of a specific circadian clock output pathway by lark, a putative RNA-binding protein with repressor activity. J Neurobiol. 1996 Sep;31(1):117–128. doi: 10.1002/(SICI)1097-4695(199609)31:1<117::AID-NEU10>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  22. Newby L. M., White L., DiBartolomeis S. M., Walker B. J., Dowse H. B., Ringo J. M., Khuda N., Jackson F. R. Mutational analysis of the Drosophila miniature-dusky (m-dy) locus: effects on cell size and circadian rhythms. Genetics. 1991 Jul;128(3):571–582. doi: 10.1093/genetics/128.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
  24. Park S., Myszka D. G., Yu M., Littler S. J., Laird-Offringa I. A. HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Mol Cell Biol. 2000 Jul;20(13):4765–4772. doi: 10.1128/mcb.20.13.4765-4772.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rendahl K. G., Gaukhshteyn N., Wheeler D. A., Fry T. A., Hall J. C. Defects in courtship and vision caused by amino acid substitutions in a putative RNA-binding protein encoded by the no-on-transient A (nonA) gene of Drosophila. J Neurosci. 1996 Feb 15;16(4):1511–1522. doi: 10.1523/JNEUROSCI.16-04-01511.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Siomi H., Dreyfuss G. RNA-binding proteins as regulators of gene expression. Curr Opin Genet Dev. 1997 Jun;7(3):345–353. doi: 10.1016/s0959-437x(97)80148-7. [DOI] [PubMed] [Google Scholar]
  27. Spradling A. C., Rubin G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982 Oct 22;218(4570):341–347. doi: 10.1126/science.6289435. [DOI] [PubMed] [Google Scholar]
  28. Stanewsky R., Fry T. A., Reim I., Saumweber H., Hall J. C. Bioassaying putative RNA-binding motifs in a protein encoded by a gene that influences courtship and visually mediated behavior in Drosophila: in vitro mutagenesis of nonA. Genetics. 1996 May;143(1):259–275. doi: 10.1093/genetics/143.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Summers M. F. Zinc finger motif for single-stranded nucleic acids? Investigations by nuclear magnetic resonance. J Cell Biochem. 1991 Jan;45(1):41–48. doi: 10.1002/jcb.240450110. [DOI] [PubMed] [Google Scholar]
  30. Zhang X., McNeil G. P., Hilderbrand-Chae M. J., Franklin T. M., Schroeder A. J., Jackson F. R. Circadian regulation of the lark RNA-binding protein within identifiable neurosecretory cells. J Neurobiol. 2000 Oct;45(1):14–29. doi: 10.1002/1097-4695(200010)45:1<14::aid-neu2>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES