Abstract
To assist investigation of the effect of sequence heterology on recombination in Neurospora crassa, we inserted the Herpes simplex thymidine kinase gene (TK) as an unselected marker on linkage group I, giving a gene order of Cen-his-3-TK-cog-lpl. We show here that in crosses heterozygous for TK, conversion of a his-3 allele on one homolog is accompanied by transfer of the heterologous sequence between cog and his-3 from the other homolog, indicating that recombination is initiated centromere-distal of TK. We have identified a 10-nucleotide motif in the cog region that, although unlikely to be sufficient for hotspot activity, is required for high-frequency recombination and, because conversion of silent sequence markers declines on either side, may be the recombination initiation site. Additionally, we have mapped conversion tracts in His(+) progeny of a translocation heterozygote, in which the translocation breakpoint separates cog from the 5' end of his-3. We present molecular evidence of recombination on both sides of the breakpoint. Because recombination is initiated close to cog and the event must therefore cross the translocation breakpoint, we suggest that template switching occurs in some recombination events, with repair synthesis alternating between use of the homolog and the initiating chromatid as template.
Full Text
The Full Text of this article is available as a PDF (247.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angel T., Austin B., Catcheside D. G. Regulation of recombination at the his-3 locus in Neurospora crassa. Aust J Biol Sci. 1970 Dec;23(6):1229–1240. doi: 10.1071/bi9701229. [DOI] [PubMed] [Google Scholar]
- Bowring F. J., Catcheside D. E. Analysis of conversion tracts associated with recombination events at the am locus of Neurospora crassa. Curr Genet. 1998 Jul;34(1):43–49. doi: 10.1007/s002940050364. [DOI] [PubMed] [Google Scholar]
- Bowring F. J., Catcheside D. E. Gene conversion alone accounts for more than 90% of recombination events at the am locus of Neurospora crassa. Genetics. 1996 May;143(1):129–136. doi: 10.1093/genetics/143.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowring F. J., Catcheside D. E. The effect of rec-2 on repeat-induced point-mutation (RIP) and recombination events that excise DNA sequence duplications at the his-3 locus in Neurospora crassa. Curr Genet. 1993 May-Jun;23(5-6):496–500. doi: 10.1007/BF00312641. [DOI] [PubMed] [Google Scholar]
- Bowring F. J., Catcheside D. E. The initiation site for recombination cog is at the 3' end of the his-3 gene in Neurospora crassa. Mol Gen Genet. 1991 Oct;229(2):273–277. doi: 10.1007/BF00272166. [DOI] [PubMed] [Google Scholar]
- Cao L., Alani E., Kleckner N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 1990 Jun 15;61(6):1089–1101. doi: 10.1016/0092-8674(90)90072-m. [DOI] [PubMed] [Google Scholar]
- Case M. E., Schweizer M., Kushner S. R., Giles N. H. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5259–5263. doi: 10.1073/pnas.76.10.5259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catcheside D. E. A restriction and modification model for the initiation and control of recombination in Neurospora. Genet Res. 1986 Jun;47(3):157–165. doi: 10.1017/s0016672300023077. [DOI] [PubMed] [Google Scholar]
- Catcheside D. G., Angel T. A histidine-3 mutant, in Neurospora crassa, due to an interchange. Aust J Biol Sci. 1974 Apr;27(2):219–229. doi: 10.1071/bi9740219. [DOI] [PubMed] [Google Scholar]
- Detloff P., White M. A., Petes T. D. Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae. Genetics. 1992 Sep;132(1):113–123. doi: 10.1093/genetics/132.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan Q., Xu F., Petes T. D. Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol Cell Biol. 1995 Mar;15(3):1679–1688. doi: 10.1128/mcb.15.3.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutz H. Site Specific Induction of Gene Conversion in SCHIZOSACCHAROMYCES POMBE. Genetics. 1971 Nov;69(3):317–337. doi: 10.1093/genetics/69.3.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malone R. E., Bullard S., Lundquist S., Kim S., Tarkowski T. A meiotic gene conversion gradient opposite to the direction of transcription. Nature. 1992 Sep 10;359(6391):154–155. doi: 10.1038/359154a0. [DOI] [PubMed] [Google Scholar]
- Nicolas A., Treco D., Schultes N. P., Szostak J. W. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature. 1989 Mar 2;338(6210):35–39. doi: 10.1038/338035a0. [DOI] [PubMed] [Google Scholar]
- Niino Y. S., Chakraborty S., Brown B. J., Massey V. A new old yellow enzyme of Saccharomyces cerevisiae. J Biol Chem. 1995 Feb 3;270(5):1983–1991. doi: 10.1074/jbc.270.5.1983. [DOI] [PubMed] [Google Scholar]
- Orr-Weaver T. L., Szostak J. W. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4417–4421. doi: 10.1073/pnas.80.14.4417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson G. I., Kubo K. M., Shroyer T., Chandler V. L. Sequences required for paramutation of the maize b gene map to a region containing the promoter and upstream sequences. Genetics. 1995 Aug;140(4):1389–1406. doi: 10.1093/genetics/140.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs M. S., Selker E. U., Lin B., Roberts C. J., Luo Z., Vaught-Alexander D., Margolin B. S. Expression of herpes virus thymidine kinase in Neurospora crassa. Nucleic Acids Res. 1997 Jun 15;25(12):2389–2395. doi: 10.1093/nar/25.12.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultes N. P., Szostak J. W. Decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus in yeast. Genetics. 1990 Dec;126(4):813–822. doi: 10.1093/genetics/126.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiroishi T., Sagai T., Moriwaki K. Hotspots of meiotic recombination in the mouse major histocompatibility complex. Genetica. 1993;88(2-3):187–196. doi: 10.1007/BF02424475. [DOI] [PubMed] [Google Scholar]
- Steinmetz M., Stephan D., Fischer Lindahl K. Gene organization and recombinational hotspots in the murine major histocompatibility complex. Cell. 1986 Mar 28;44(6):895–904. doi: 10.1016/0092-8674(86)90012-7. [DOI] [PubMed] [Google Scholar]
- Symington L. S., Brown A., Oliver S. G., Greenwell P., Petes T. D. Genetic analysis of a meiotic recombination hotspot on chromosome III of Saccharomyces cerevisiae. Genetics. 1991 Aug;128(4):717–727. doi: 10.1093/genetics/128.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomsen M., Abbal M., Neugebauer M., Cambon-Thomsen A. Recombinations in the HLA system. Tissue Antigens. 1989 Jan;33(1):38–40. doi: 10.1111/j.1399-0039.1989.tb01675.x. [DOI] [PubMed] [Google Scholar]
- Wu T. C., Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science. 1994 Jan 28;263(5146):515–518. doi: 10.1126/science.8290959. [DOI] [PubMed] [Google Scholar]
- Yeadon P. J., Catcheside D. E. Long, interrupted conversion tracts initiated by cog in Neurospora crassa. Genetics. 1998 Jan;148(1):113–122. doi: 10.1093/genetics/148.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeadon P. J., Catcheside D. E. Polymorphism around cog extends into adjacent structural genes. Curr Genet. 1999 Jul;35(6):631–637. doi: 10.1007/s002940050462. [DOI] [PubMed] [Google Scholar]
- Yeadon P. J., Catcheside D. E. The chromosomal region which includes the recombinator cog in Neurospora crassa is highly polymorphic. Curr Genet. 1995 Jul;28(2):155–163. doi: 10.1007/BF00315782. [DOI] [PubMed] [Google Scholar]