Skip to main content
Genetics logoLink to Genetics
. 2001 Oct;159(2):777–785. doi: 10.1093/genetics/159.2.777

Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana.

A Dill 1, T Sun 1
PMCID: PMC1461816  PMID: 11606552

Abstract

RGA and GAI are negative regulators of the gibberellin (GA) signal transduction pathway in Arabidopsis thaliana. These genes may have partially redundant functions because they are highly homologous, and plants containing single null mutations at these loci are phenotypically similar to wild type. Previously, rga loss-of-function mutations were shown to partially suppress defects of the GA-deficient ga1-3 mutant. Phenotypes rescued include abaxial trichome initiation, rosette radius, flowering time, stem elongation, and apical dominance. Here we present work showing that the rga-24 and gai-t6 null mutations have a synergistic effect on plant growth. Although gai-t6 alone has little effect, when combined with rga-24, they completely rescued the above defects of ga1-3 to wild-type or GA-overdose phenotype. However, seed germination and flower development defects were not restored. Additionally, rga-24 and rga-24/gai-t6 but not gai-t6 alone caused increased feedback inhibition of expression of a GA biosynthetic gene in both the ga1-3 and wild-type backgrounds. These results demonstrate that RGA and GAI have partially redundant functions in maintaining the repressive state of the GA-signaling pathway, but RGA plays a more dominant role than GAI. Removing both RGA and GAI function allows for complete derepression of many aspects of GA signaling.

Full Text

The Full Text of this article is available as a PDF (343.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashikari M., Wu J., Yano M., Sasaki T., Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10284–10289. doi: 10.1073/pnas.96.18.10284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bethke P. C., Jones R. L. Gibberellin signaling. Curr Opin Plant Biol. 1998 Oct;1(5):440–446. doi: 10.1016/s1369-5266(98)80270-7. [DOI] [PubMed] [Google Scholar]
  3. Chandler PM, Robertson M. Gibberellin dose-response curves and the characterization of dwarf mutants of barley . Plant Physiol. 1999 Jun;120(2):623–632. doi: 10.1104/pp.120.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiang H. H., Hwang I., Goodman H. M. Isolation of the Arabidopsis GA4 locus. Plant Cell. 1995 Feb;7(2):195–201. doi: 10.1105/tpc.7.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chien J. C., Sussex I. M. Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1996 Aug;111(4):1321–1328. doi: 10.1104/pp.111.4.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cowling R. J., Kamiya Y., Seto H., Harberd N. P. Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis. Plant Physiol. 1998 Aug;117(4):1195–1203. doi: 10.1104/pp.117.4.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fridborg I., Kuusk S., Moritz T., Sundberg E. The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell. 1999 Jun;11(6):1019–1032. doi: 10.1105/tpc.11.6.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilroy S., Jones R. L. Perception of Gibberellin and Abscisic Acid at the External Face of the Plasma Membrane of Barley (Hordeum vulgare L.) Aleurone Protoplasts. Plant Physiol. 1994 Apr;104(4):1185–1192. doi: 10.1104/pp.104.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harberd N. P., King K. E., Carol P., Cowling R. J., Peng J., Richards D. E. Gibberellin: inhibitor of an inhibitor of...? Bioessays. 1998 Dec;20(12):1001–1008. doi: 10.1002/(SICI)1521-1878(199812)20:12<1001::AID-BIES6>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  10. Hart G. W. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem. 1997;66:315–335. doi: 10.1146/annurev.biochem.66.1.315. [DOI] [PubMed] [Google Scholar]
  11. Hedden P., Phillips A. L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci. 2000 Dec;5(12):523–530. doi: 10.1016/s1360-1385(00)01790-8. [DOI] [PubMed] [Google Scholar]
  12. Hooley R. Gibberellins: perception, transduction and responses. Plant Mol Biol. 1994 Dec;26(5):1529–1555. doi: 10.1007/BF00016489. [DOI] [PubMed] [Google Scholar]
  13. Ikeda A., Ueguchi-Tanaka M., Sonoda Y., Kitano H., Koshioka M., Futsuhara Y., Matsuoka M., Yamaguchi J. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell. 2001 May;13(5):999–1010. doi: 10.1105/tpc.13.5.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobsen S. E., Olszewski N. E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 1993 Aug;5(8):887–896. doi: 10.1105/tpc.5.8.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lovegrove A., Hooley R. Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci. 2000 Mar;5(3):102–110. doi: 10.1016/s1360-1385(00)01571-5. [DOI] [PubMed] [Google Scholar]
  16. Ogawa M., Kusano T., Katsumi M., Sano H. Rice gibberellin-insensitive gene homolog, OsGAI, encodes a nuclear-localized protein capable of gene activation at transcriptional level. Gene. 2000 Mar 7;245(1):21–29. doi: 10.1016/s0378-1119(00)00018-4. [DOI] [PubMed] [Google Scholar]
  17. Peng J., Carol P., Richards D. E., King K. E., Cowling R. J., Murphy G. P., Harberd N. P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1997 Dec 1;11(23):3194–3205. doi: 10.1101/gad.11.23.3194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peng J., Richards D. E., Hartley N. M., Murphy G. P., Devos K. M., Flintham J. E., Beales J., Fish L. J., Worland A. J., Pelica F. 'Green revolution' genes encode mutant gibberellin response modulators. Nature. 1999 Jul 15;400(6741):256–261. doi: 10.1038/22307. [DOI] [PubMed] [Google Scholar]
  19. Phinney B. O. GROWTH RESPONSE OF SINGLE-GENE DWARF MUTANTS IN MAIZE TO GIBBERELLIC ACID. Proc Natl Acad Sci U S A. 1956 Apr;42(4):185–189. doi: 10.1073/pnas.42.4.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pysh L. D., Wysocka-Diller J. W., Camilleri C., Bouchez D., Benfey P. N. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 1999 Apr;18(1):111–119. doi: 10.1046/j.1365-313x.1999.00431.x. [DOI] [PubMed] [Google Scholar]
  21. Silverstone A. L., Ciampaglio C. N., Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell. 1998 Feb;10(2):155–169. doi: 10.1105/tpc.10.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Silverstone A. L., Jung H. S., Dill A., Kawaide H., Kamiya Y., Sun T. P. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell. 2001 Jul;13(7):1555–1566. doi: 10.1105/TPC.010047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Silverstone A. L., Mak P. Y., Martínez E. C., Sun T. P. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics. 1997 Jul;146(3):1087–1099. doi: 10.1093/genetics/146.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Steber C. M., Cooney S. E., McCourt P. Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics. 1998 Jun;149(2):509–521. doi: 10.1093/genetics/149.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sun T. Gibberellin signal transduction. Curr Opin Plant Biol. 2000 Oct;3(5):374–380. doi: 10.1016/s1369-5266(00)00099-6. [DOI] [PubMed] [Google Scholar]
  26. Thornton TM, Swain SM, Olszewski NE. Gibberellin signal transduction presents ellipsisthe SPY who O-GlcNAc'd me. Trends Plant Sci. 1999 Nov;4(11):424–428. doi: 10.1016/s1360-1385(99)01485-5. [DOI] [PubMed] [Google Scholar]
  27. Ueguchi-Tanaka M., Fujisawa Y., Kobayashi M., Ashikari M., Iwasaki Y., Kitano H., Matsuoka M. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11638–11643. doi: 10.1073/pnas.97.21.11638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vision T. J., Brown D. G., Tanksley S. D. The origins of genomic duplications in Arabidopsis. Science. 2000 Dec 15;290(5499):2114–2117. doi: 10.1126/science.290.5499.2114. [DOI] [PubMed] [Google Scholar]
  29. Wilson R. N., Heckman J. W., Somerville C. R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992 Sep;100(1):403–408. doi: 10.1104/pp.100.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamaguchi S., Smith M. W., Brown R. G., Kamiya Y., Sun T. Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell. 1998 Dec;10(12):2115–2126. doi: 10.1105/tpc.10.12.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES