Skip to main content
Genetics logoLink to Genetics
. 2001 Oct;159(2):853–867. doi: 10.1093/genetics/159.2.853

Likelihoods and simulation methods for a class of nonneutral population genetics models.

P Donnelly 1, M Nordborg 1, P Joyce 1
PMCID: PMC1461835  PMID: 11606558

Abstract

Methods for simulating samples and sample statistics, under mutation-selection-drift equilibrium for a class of nonneutral population genetics models, and for evaluating the likelihood surface, in selection and mutation parameters, are developed and applied for observed data. The methods apply to large populations in settings in which selection is weak, in the sense that selection intensities, like mutation rates, are of the order of the inverse of the population size. General diploid selection is allowed, but the approach is currently restricted to models, such as the infinite alleles model and certain K-models, in which the type of a mutant allele does not depend on the type of its progenitor allele. The simulation methods have considerable advantages over available alternatives. No other methods currently seem practicable for approximating likelihood surfaces.

Full Text

The Full Text of this article is available as a PDF (538.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Donnelly P. Partition structures, Polya urns, the Ewens sampling formula, and the ages of alleles. Theor Popul Biol. 1986 Oct;30(2):271–288. doi: 10.1016/0040-5809(86)90037-7. [DOI] [PubMed] [Google Scholar]
  2. Donnelly P., Tavaré S. The population genealogy of the infinitely--many neutral alleles model. J Math Biol. 1987;25(4):381–391. doi: 10.1007/BF00277163. [DOI] [PubMed] [Google Scholar]
  3. Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
  4. Joyce P., Tavaré S. The distribution of rare alleles. J Math Biol. 1995;33(6):602–618. doi: 10.1007/BF00298645. [DOI] [PubMed] [Google Scholar]
  5. Keith T. P., Brooks L. D., Lewontin R. C., Martinez-Cruzado J. C., Rigby D. L. Nearly identical allelic distributions of xanthine dehydrogenase in two populations of Drosophila pseudoobscura. Mol Biol Evol. 1985 May;2(3):206–216. doi: 10.1093/oxfordjournals.molbev.a040348. [DOI] [PubMed] [Google Scholar]
  6. Neuhauser C., Krone S. M. The genealogy of samples in models with selection. Genetics. 1997 Feb;145(2):519–534. doi: 10.1093/genetics/145.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Qiu W. G., Bosler E. M., Campbell J. R., Ugine G. D., Wang I. N., Luft B. J., Dykhuizen D. E. A population genetic study of Borrelia burgdorferi sensu stricto from eastern Long Island, New York, suggested frequency-dependent selection, gene flow and host adaptation. Hereditas. 1997;127(3):203–216. doi: 10.1111/j.1601-5223.1997.00203.x. [DOI] [PubMed] [Google Scholar]
  8. Watterson G. A. Estimating the proportion of neutral mutants. Genet Res. 1987 Oct;50(2):155–163. doi: 10.1017/s0016672300023569. [DOI] [PubMed] [Google Scholar]
  9. Watterson G. A. The homozygosity test of neutrality. Genetics. 1978 Feb;88(2):405–417. doi: 10.1093/genetics/88.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES