Skip to main content
Genetics logoLink to Genetics
. 2001 Oct;159(2):699–713. doi: 10.1093/genetics/159.2.699

Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds.

N A Rosenberg 1, T Burke 1, K Elo 1, M W Feldman 1, P J Freidlin 1, M A Groenen 1, J Hillel 1, A Mäki-Tanila 1, M Tixier-Boichard 1, A Vignal 1, K Wimmers 1, S Weigend 1
PMCID: PMC1461842  PMID: 11606545

Abstract

We tested the utility of genetic cluster analysis in ascertaining population structure of a large data set for which population structure was previously known. Each of 600 individuals representing 20 distinct chicken breeds was genotyped for 27 microsatellite loci, and individual multilocus genotypes were used to infer genetic clusters. Individuals from each breed were inferred to belong mostly to the same cluster. The clustering success rate, measuring the fraction of individuals that were properly inferred to belong to their correct breeds, was consistently approximately 98%. When markers of highest expected heterozygosity were used, genotypes that included at least 8-10 highly variable markers from among the 27 markers genotyped also achieved >95% clustering success. When 12-15 highly variable markers and only 15-20 of the 30 individuals per breed were used, clustering success was at least 90%. We suggest that in species for which population structure is of interest, databases of multilocus genotypes at highly variable markers should be compiled. These genotypes could then be used as training samples for genetic cluster analysis and to facilitate assignments of individuals of unknown origin to populations. The clustering algorithm has potential applications in defining the within-species genetic units that are useful in problems of conservation.

Full Text

The Full Text of this article is available as a PDF (210.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaumont M., Barratt E. M., Gottelli D., Kitchener A. C., Daniels M. J., Pritchard J. K., Bruford M. W. Genetic diversity and introgression in the Scottish wildcat. Mol Ecol. 2001 Feb;10(2):319–336. doi: 10.1046/j.1365-294x.2001.01196.x. [DOI] [PubMed] [Google Scholar]
  2. Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
  3. Buchanan F. C., Adams L. J., Littlejohn R. P., Maddox J. F., Crawford A. M. Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics. 1994 Jul 15;22(2):397–403. doi: 10.1006/geno.1994.1401. [DOI] [PubMed] [Google Scholar]
  4. Cornuet J. M., Piry S., Luikart G., Estoup A., Solignac M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics. 1999 Dec;153(4):1989–2000. doi: 10.1093/genetics/153.4.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK. Considering evolutionary processes in conservation biology. Trends Ecol Evol. 2000 Jul;15(7):290–295. doi: 10.1016/s0169-5347(00)01876-0. [DOI] [PubMed] [Google Scholar]
  6. Crooijmans R. P., Groen A. F., Van Kampen A. J., Van der Beek S., Van der Poel J. J., Groenen M. A. Microsatellite polymorphism in commercial broiler and layer lines estimated using pooled blood samples. Poult Sci. 1996 Jul;75(7):904–909. doi: 10.3382/ps.0750904. [DOI] [PubMed] [Google Scholar]
  7. Crooijmans R. P., Groen A. F., Van Kampen A. J., Van der Beek S., Van der Poel J. J., Groenen M. A. Microsatellite polymorphism in commercial broiler and layer lines estimated using pooled blood samples. Poult Sci. 1996 Jul;75(7):904–909. doi: 10.3382/ps.0750904. [DOI] [PubMed] [Google Scholar]
  8. Davies N, Villablanca FX, Roderick GK. Determining the source of individuals: multilocus genotyping in nonequilibrium population genetics. Trends Ecol Evol. 1999 Jan;14(1):17–21. doi: 10.1016/s0169-5347(98)01530-4. [DOI] [PubMed] [Google Scholar]
  9. Dunnington E. A., Stallard L. C., Hillel J., Siegel P. B. Genetic diversity among commercial chicken populations estimated from DNA fingerprints. Poult Sci. 1994 Aug;73(8):1218–1225. doi: 10.3382/ps.0731218. [DOI] [PubMed] [Google Scholar]
  10. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6723–6727. doi: 10.1073/pnas.92.15.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Groenen M. A., Cheng H. H., Bumstead N., Benkel B. F., Briles W. E., Burke T., Burt D. W., Crittenden L. B., Dodgson J., Hillel J. A consensus linkage map of the chicken genome. Genome Res. 2000 Jan;10(1):137–147. doi: 10.1101/gr.10.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jin L., Baskett M. L., Cavalli-Sforza L. L., Zhivotovsky L. A., Feldman M. W., Rosenberg N. A. Microsatellite evolution in modern humans: a comparison of two data sets from the same populations. Ann Hum Genet. 2000 Mar;64(Pt 2):117–134. doi: 10.1017/S0003480000008034. [DOI] [PubMed] [Google Scholar]
  13. Kaiser M. G., Yonash N., Cahaner A., Lamont S. J. Microsatellite polymorphism between and within broiler populations. Poult Sci. 2000 May;79(5):626–628. doi: 10.1093/ps/79.5.626. [DOI] [PubMed] [Google Scholar]
  14. Moazami-Goudarzi K., Laloë D., Furet J. P., Grosclaude F. Analysis of genetic relationships between 10 cattle breeds with 17 microsatellites. Anim Genet. 1997 Oct;28(5):338–345. doi: 10.1111/j.1365-2052.1997.00176.x. [DOI] [PubMed] [Google Scholar]
  15. Mountain J. L., Cavalli-Sforza L. L. Multilocus genotypes, a tree of individuals, and human evolutionary history. Am J Hum Genet. 1997 Sep;61(3):705–718. doi: 10.1086/515510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Notter D. R. The importance of genetic diversity in livestock populations of the future. J Anim Sci. 1999 Jan;77(1):61–69. doi: 10.2527/1999.77161x. [DOI] [PubMed] [Google Scholar]
  17. Paetkau D., Calvert W., Stirling I., Strobeck C. Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol. 1995 Jun;4(3):347–354. doi: 10.1111/j.1365-294x.1995.tb00227.x. [DOI] [PubMed] [Google Scholar]
  18. Ponsuksili S., Wimmers K., Horst P. Evaluation of genetic variation within and between different chicken lines by DNA fingerprinting. J Hered. 1998 Jan-Feb;89(1):17–23. doi: 10.1093/jhered/89.1.17. [DOI] [PubMed] [Google Scholar]
  19. Primmer C. R., Koskinen M. T., Piironen J. The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraud. Proc Biol Sci. 2000 Aug 22;267(1453):1699–1704. doi: 10.1098/rspb.2000.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rannala B., Mountain J. L. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9197–9201. doi: 10.1073/pnas.94.17.9197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reed T. E. Number of gene loci required for accurate estimation of ancestral population proportions in individual human hybrids. Nature. 1973 Aug 31;244(5418):575–576. doi: 10.1038/244575a0. [DOI] [PubMed] [Google Scholar]
  22. Rosenberg N. A., Woolf E., Pritchard J. K., Schaap T., Gefel D., Shpirer I., Lavi U., Bonne-Tamir B., Hillel J., Feldman M. W. Distinctive genetic signatures in the Libyan Jews. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):858–863. doi: 10.1073/pnas.98.3.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  24. Shriver M. D., Smith M. W., Jin L., Marcini A., Akey J. M., Deka R., Ferrell R. E. Ethnic-affiliation estimation by use of population-specific DNA markers. Am J Hum Genet. 1997 Apr;60(4):957–964. [PMC free article] [PubMed] [Google Scholar]
  25. Takahashi H., Nirasawa K., Nagamine Y., Tsudzuki M., Yamamoto Y. Genetic relationships among Japanese native breeds of chicken based on microsatellite DNA polymorphisms. J Hered. 1998 Nov-Dec;89(6):543–546. doi: 10.1093/jhered/89.6.543. [DOI] [PubMed] [Google Scholar]
  26. Vanhala T., Tuiskula-Haavisto M., Elo K., Vilkki J., Mäki-Tanila A. Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers. Poult Sci. 1998 Jun;77(6):783–790. doi: 10.1093/ps/77.6.783. [DOI] [PubMed] [Google Scholar]
  27. Wimmers K., Ponsuksili S., Hardge T., Valle-Zarate A., Mathur P. K., Horst P. Genetic distinctness of African, Asian and South American local chickens. Anim Genet. 2000 Jun;31(3):159–165. doi: 10.1046/j.1365-2052.2000.00605.x. [DOI] [PubMed] [Google Scholar]
  28. Zhivotovsky L. A., Bennett L., Bowcock A. M., Feldman M. W. Human population expansion and microsatellite variation. Mol Biol Evol. 2000 May;17(5):757–767. doi: 10.1093/oxfordjournals.molbev.a026354. [DOI] [PubMed] [Google Scholar]
  29. Zhou H., Lamont S. J. Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite markers. Anim Genet. 1999 Aug;30(4):256–264. doi: 10.1046/j.1365-2052.1999.00505.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES