Skip to main content
Genetics logoLink to Genetics
. 2001 Oct;159(2):499–513. doi: 10.1093/genetics/159.2.499

Development of Saccharomyces cerevisiae as a model pathogen. A system for the genetic identification of gene products required for survival in the mammalian host environment.

A L Goldstein 1, J H McCusker 1
PMCID: PMC1461844  PMID: 11606528

Abstract

Saccharomyces cerevisiae, a close relative of the pathogenic Candida species, is an emerging opportunistic pathogen. An isogenic series of S. cerevisiae strains, derived from a human clinical isolate, were used to examine the role of evolutionarily conserved pathways in fungal survival in a mouse host. As is the case for the corresponding Candida albicans and Cryptococcus neoformans mutants, S. cerevisiae purine and pyrimidine auxotrophs were severely deficient in survival, consistent with there being evolutionary conservation of survival traits. Resistance to the antifungal drug 5-fluorocytosine was not deleterious and appeared to be slightly advantageous in vivo. Of mutants in three amino acid biosynthetic pathways, only leu2 mutants were severely deficient in vivo. Unlike the glyoxylate cycle, respiration was very important for survival; however, the mitochondrial genome made a respiration-independent contribution to survival. Mutants deficient in pseudohyphal formation were tested in vivo; flo11Delta mutants were phenotypically neutral while flo8Delta, tec1Delta, and flo8Delta tec1Delta mutants were slightly deficient. Because of its ease of genetic manipulation and the immense S. cerevisiae database, which includes the best annotated eukaryotic genome sequence, S. cerevisiae is a superb model system for the identification of gene products important for fungal survival in the mammalian host environment.

Full Text

The Full Text of this article is available as a PDF (132.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson D. I., Levin B. R. The biological cost of antibiotic resistance. Curr Opin Microbiol. 1999 Oct;2(5):489–493. doi: 10.1016/s1369-5274(99)00005-3. [DOI] [PubMed] [Google Scholar]
  2. Baganz F., Hayes A., Farquhar R., Butler P. R., Gardner D. C., Oliver S. G. Quantitative analysis of yeast gene function using competition experiments in continuous culture. Yeast. 1998 Nov;14(15):1417–1427. doi: 10.1002/(SICI)1097-0061(199811)14:15<1417::AID-YEA334>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  3. Baganz F., Hayes A., Marren D., Gardner D. C., Oliver S. G. Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast. 1997 Dec;13(16):1563–1573. doi: 10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  4. Beck-Sagué C., Jarvis W. R. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System. J Infect Dis. 1993 May;167(5):1247–1251. doi: 10.1093/infdis/167.5.1247. [DOI] [PubMed] [Google Scholar]
  5. Björkman J., Hughes D., Andersson D. I. Virulence of antibiotic-resistant Salmonella typhimurium. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3949–3953. doi: 10.1073/pnas.95.7.3949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Björkman J., Nagaev I., Berg O. G., Hughes D., Andersson D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science. 2000 Feb 25;287(5457):1479–1482. doi: 10.1126/science.287.5457.1479. [DOI] [PubMed] [Google Scholar]
  7. Björkman J., Samuelsson P., Andersson D. I., Hughes D. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol Microbiol. 1999 Jan;31(1):53–58. doi: 10.1046/j.1365-2958.1999.01142.x. [DOI] [PubMed] [Google Scholar]
  8. Bowman B. H., Taylor J. W., White T. J. Molecular evolution of the fungi: human pathogens. Mol Biol Evol. 1992 Sep;9(5):893–904. doi: 10.1093/oxfordjournals.molbev.a040766. [DOI] [PubMed] [Google Scholar]
  9. Brown J. S., Aufauvre-Brown A., Brown J., Jennings J. M., Arst H., Jr, Holden D. W. Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol. 2000 Jun;36(6):1371–1380. doi: 10.1046/j.1365-2958.2000.01953.x. [DOI] [PubMed] [Google Scholar]
  10. Byron J. K., Clemons K. V., McCusker J. H., Davis R. W., Stevens D. A. Pathogenicity of Saccharomyces cerevisiae in complement factor five-deficient mice. Infect Immun. 1995 Feb;63(2):478–485. doi: 10.1128/iai.63.2.478-485.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chaudhuri B., Ingavale S., Bachhawat A. K. apd1+, a gene required for red pigment formation in ade6 mutants of Schizosaccharomyces pombe, encodes an enzyme required for glutathione biosynthesis: a role for glutathione and a glutathione-conjugate pump. Genetics. 1997 Jan;145(1):75–83. doi: 10.1093/genetics/145.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chiang S. L., Mekalanos J. J. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol. 1998 Feb;27(4):797–805. doi: 10.1046/j.1365-2958.1998.00726.x. [DOI] [PubMed] [Google Scholar]
  13. Church C., Poyton R. O. Neither respiration nor cytochrome c oxidase affects mitochondrial morphology in Saccharomyces cerevisiae. J Exp Biol. 1998 Jun;201(Pt 11):1729–1737. doi: 10.1242/jeb.201.11.1729. [DOI] [PubMed] [Google Scholar]
  14. Clemons K. V., McCusker J. H., Davis R. W., Stevens D. A. Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. J Infect Dis. 1994 Apr;169(4):859–867. doi: 10.1093/infdis/169.4.859. [DOI] [PubMed] [Google Scholar]
  15. Clemons K. V., Park P., McCusker J. H., McCullough M. J., Davis R. W., Stevens D. A. Application of DNA typing methods and genetic analysis to epidemiology and taxonomy of Saccharomyces isolates. J Clin Microbiol. 1997 Jul;35(7):1822–1828. doi: 10.1128/jcm.35.7.1822-1828.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Csank C., Haynes K. Candida glabrata displays pseudohyphal growth. FEMS Microbiol Lett. 2000 Aug 1;189(1):115–120. doi: 10.1111/j.1574-6968.2000.tb09216.x. [DOI] [PubMed] [Google Scholar]
  17. Ernst J. F. Transcription factors in Candida albicans - environmental control of morphogenesis. Microbiology. 2000 Aug;146(Pt 8):1763–1774. doi: 10.1099/00221287-146-8-1763. [DOI] [PubMed] [Google Scholar]
  18. Fernández E., Moreno F., Rodicio R. The ICL1 gene from Saccharomyces cerevisiae. Eur J Biochem. 1992 Mar 15;204(3):983–990. doi: 10.1111/j.1432-1033.1992.tb16720.x. [DOI] [PubMed] [Google Scholar]
  19. Fidel P. L., Jr, Vazquez J. A., Sobel J. D. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev. 1999 Jan;12(1):80–96. doi: 10.1128/cmr.12.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Flavell R. B. Mitochondrion as a multifunctional organelle. Nature. 1971 Apr 23;230(5295):504–506. doi: 10.1038/230504a0. [DOI] [PubMed] [Google Scholar]
  21. Foury F. Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J Biol Chem. 1989 Dec 5;264(34):20552–20560. [PubMed] [Google Scholar]
  22. Gancedo J. M. Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001 Jan;25(1):107–123. doi: 10.1111/j.1574-6976.2001.tb00573.x. [DOI] [PubMed] [Google Scholar]
  23. Genga A., Bianchi L., Foury F. A nuclear mutant of Saccharomyces cerevisiae deficient in mitochondrial DNA replication and polymerase activity. J Biol Chem. 1986 Jul 15;261(20):9328–9332. [PubMed] [Google Scholar]
  24. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995 Apr 15;11(4):355–360. doi: 10.1002/yea.320110408. [DOI] [PubMed] [Google Scholar]
  25. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992 Mar 20;68(6):1077–1090. doi: 10.1016/0092-8674(92)90079-r. [DOI] [PubMed] [Google Scholar]
  26. Glerum D. M., Muroff I., Jin C., Tzagoloff A. COX15 codes for a mitochondrial protein essential for the assembly of yeast cytochrome oxidase. J Biol Chem. 1997 Jul 25;272(30):19088–19094. doi: 10.1074/jbc.272.30.19088. [DOI] [PubMed] [Google Scholar]
  27. Goldstein A. L., McCusker J. H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast. 1999 Oct;15(14):1541–1553. doi: 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  28. Grant C. M., MacIver F. H., Dawes I. W. Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett. 1997 Jun 30;410(2-3):219–222. doi: 10.1016/s0014-5793(97)00592-9. [DOI] [PubMed] [Google Scholar]
  29. Hallstrom T. C., Moye-Rowley W. S. Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem. 2000 Dec 1;275(48):37347–37356. doi: 10.1074/jbc.M007338200. [DOI] [PubMed] [Google Scholar]
  30. Hazen K. C. New and emerging yeast pathogens. Clin Microbiol Rev. 1995 Oct;8(4):462–478. doi: 10.1128/cmr.8.4.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lambrechts M. G., Bauer F. F., Marmur J., Pretorius I. S. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8419–8424. doi: 10.1073/pnas.93.16.8419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Leberer E., Ziegelbauer K., Schmidt A., Harcus D., Dignard D., Ash J., Johnson L., Thomas D. Y. Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol. 1997 Aug 1;7(8):539–546. doi: 10.1016/s0960-9822(06)00252-1. [DOI] [PubMed] [Google Scholar]
  33. Liao X., Butow R. A. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell. 1993 Jan 15;72(1):61–71. doi: 10.1016/0092-8674(93)90050-z. [DOI] [PubMed] [Google Scholar]
  34. Liu H., Styles C. A., Fink G. R. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics. 1996 Nov;144(3):967–978. doi: 10.1093/genetics/144.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lo H. J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997 Sep 5;90(5):939–949. doi: 10.1016/s0092-8674(00)80358-x. [DOI] [PubMed] [Google Scholar]
  36. Lorenz M. C., Fink G. R. The glyoxylate cycle is required for fungal virulence. Nature. 2001 Jul 5;412(6842):83–86. doi: 10.1038/35083594. [DOI] [PubMed] [Google Scholar]
  37. Lott T. J., Kuykendall R. J., Reiss E. Nucleotide sequence analysis of the 5.8S rDNA and adjacent ITS2 region of Candida albicans and related species. Yeast. 1993 Nov;9(11):1199–1206. doi: 10.1002/yea.320091106. [DOI] [PubMed] [Google Scholar]
  38. Mahan M. J., Slauch J. M., Mekalanos J. J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science. 1993 Jan 29;259(5095):686–688. doi: 10.1126/science.8430319. [DOI] [PubMed] [Google Scholar]
  39. McCammon M. T. Mutants of Saccharomyces cerevisiae with defects in acetate metabolism: isolation and characterization of Acn- mutants. Genetics. 1996 Sep;144(1):57–69. doi: 10.1093/genetics/144.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. McCullough M. J., Clemons K. V., Farina C., McCusker J. H., Stevens D. A. Epidemiological investigation of vaginal Saccharomyces cerevisiae isolates by a genotypic method. J Clin Microbiol. 1998 Feb;36(2):557–562. doi: 10.1128/jcm.36.2.557-562.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. McCusker J. H., Clemons K. V., Stevens D. A., Davis R. W. Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae. Infect Immun. 1994 Dec;62(12):5447–5455. doi: 10.1128/iai.62.12.5447-5455.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. McKinney J. D., Höner zu Bentrup K., Muñoz-Elías E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Jacobs W. R., Jr, Russell D. G. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000 Aug 17;406(6797):735–738. doi: 10.1038/35021074. [DOI] [PubMed] [Google Scholar]
  43. Niedenthal R. K., Riles L., Johnston M., Hegemann J. H. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast. 1996 Jun 30;12(8):773–786. doi: 10.1002/(SICI)1097-0061(19960630)12:8%3C773::AID-YEA972%3E3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  44. Oliver S. G., Williamson D. H. The conditions required for the induction of petite yeast mutants by fluorinated pyrimidines. Mol Gen Genet. 1976 Aug 2;146(3):261–268. doi: 10.1007/BF00701249. [DOI] [PubMed] [Google Scholar]
  45. Oliver S. G., Williamson D. H. The molecular events involved in the induction of petite yeast mutants by fluorinated pyrimidines. Mol Gen Genet. 1976 Aug 2;146(3):253–259. doi: 10.1007/BF00701248. [DOI] [PubMed] [Google Scholar]
  46. Palermo L. M., Leak F. W., Tove S., Parks L. W. Assessment of the essentiality of ERG genes late in ergosterol biosynthesis in Saccharomyces cerevisiae. Curr Genet. 1997 Aug;32(2):93–99. doi: 10.1007/s002940050252. [DOI] [PubMed] [Google Scholar]
  47. Pan X., Heitman J. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Jul;19(7):4874–4887. doi: 10.1128/mcb.19.7.4874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Parikh V. S., Morgan M. M., Scott R., Clements L. S., Butow R. A. The mitochondrial genotype can influence nuclear gene expression in yeast. Science. 1987 Jan 30;235(4788):576–580. doi: 10.1126/science.3027892. [DOI] [PubMed] [Google Scholar]
  49. Perfect J. R., Toffaletti D. L., Rude T. H. The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun. 1993 Oct;61(10):4446–4451. doi: 10.1128/iai.61.10.4446-4451.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Poyton R. O., McEwen J. E. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem. 1996;65:563–607. doi: 10.1146/annurev.bi.65.070196.003023. [DOI] [PubMed] [Google Scholar]
  51. Pungartnik C., Kern M. F., Brendel M., Henriques J. A. Mutant allele pso7-1, that sensitizes Saccharomyces cerevisiae to photoactivated psoralen, is allelic with COX11, encoding a protein indispensable for a functional cytochrome c oxidase. Curr Genet. 1999 Sep;36(3):124–129. doi: 10.1007/s002940050481. [DOI] [PubMed] [Google Scholar]
  52. Rupp S., Summers E., Lo H. J., Madhani H., Fink G. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 1999 Mar 1;18(5):1257–1269. doi: 10.1093/emboj/18.5.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Schweizer A., Rupp S., Taylor B. N., Röllinghoff M., Schröppel K. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol Microbiol. 2000 Nov;38(3):435–445. doi: 10.1046/j.1365-2958.2000.02132.x. [DOI] [PubMed] [Google Scholar]
  54. Schöler A., Schüller H. J. Structure and regulation of the isocitrate lyase gene ICL1 from the yeast Saccharomyces cerevisiae. Curr Genet. 1993 May-Jun;23(5-6):375–381. doi: 10.1007/BF00312621. [DOI] [PubMed] [Google Scholar]
  55. Simões-Mendes B., Madeira-Lopes A., van Uden N. Kinetics of petite mutation and thermal death in Saccharomyces cerevisiae growing at superoptimal temperatures. Z Allg Mikrobiol. 1978;18(4):275–279. doi: 10.1002/jobm.3630180406. [DOI] [PubMed] [Google Scholar]
  56. Slauch J. M., Mahan M. J., Mekalanos J. J. In vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods Enzymol. 1994;235:481–492. doi: 10.1016/0076-6879(94)35164-3. [DOI] [PubMed] [Google Scholar]
  57. Smith V., Botstein D., Brown P. O. Genetic footprinting: a genomic strategy for determining a gene's function given its sequence. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6479–6483. doi: 10.1073/pnas.92.14.6479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Stoldt V. R., Sonneborn A., Leuker C. E., Ernst J. F. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 1997 Apr 15;16(8):1982–1991. doi: 10.1093/emboj/16.8.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Thompson J. R., Register E., Curotto J., Kurtz M., Kelly R. An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast. 1998 Apr 30;14(6):565–571. doi: 10.1002/(SICI)1097-0061(19980430)14:6<565::AID-YEA251>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  60. Tzagoloff A., Dieckmann C. L. PET genes of Saccharomyces cerevisiae. Microbiol Rev. 1990 Sep;54(3):211–225. doi: 10.1128/mr.54.3.211-225.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Ugolini S., Bruschi C. V. The red/white colony color assay in the yeast Saccharomyces cerevisiae: epistatic growth advantage of white ade8-18, ade2 cells over red ade2 cells. Curr Genet. 1996 Dec;30(6):485–492. doi: 10.1007/s002940050160. [DOI] [PubMed] [Google Scholar]
  62. Vanden Bossche H., Marichal P., Odds F. C. Molecular mechanisms of drug resistance in fungi. Trends Microbiol. 1994 Oct;2(10):393–400. doi: 10.1016/0966-842x(94)90618-1. [DOI] [PubMed] [Google Scholar]
  63. Vermes A., Guchelaar H. J., Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000 Aug;46(2):171–179. doi: 10.1093/jac/46.2.171. [DOI] [PubMed] [Google Scholar]
  64. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]
  65. Winzeler E. A., Richards D. R., Conway A. R., Goldstein A. L., Kalman S., McCullough M. J., McCusker J. H., Stevens D. A., Wodicka L., Lockhart D. J. Direct allelic variation scanning of the yeast genome. Science. 1998 Aug 21;281(5380):1194–1197. doi: 10.1126/science.281.5380.1194. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES