Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Oct 15;24(20):3962–3967. doi: 10.1093/nar/24.20.3962

The acridine ring selectively intercalated into a DNA helix at various types of abasic sites: double strand formation and photophysical properties.

K Fukui 1, K Tanaka 1
PMCID: PMC146185  PMID: 8918798

Abstract

The interactions between the intercalating agent and the three types of abasic sites: abasic frameshift, apurinic and apyrimidinic, were investigated. 9-amino-6-chloro-2-methoxyacridine (ACMA), whose spectroscopic properties are strongly perturbed by the environment, was selected as the intercalating agent. The optically pure threoninol derived from the reduction of L-threonine was used as an artificial abasic site mimicking the ring-opened natural ribose. In order to secure the selective intercalation to the adjacent abasic site, ACMA and the abasic site were connected through a tri- pentamethylene linker. These modified oligonucleotides covalently linked to an ACMA molecule at the internucleotide site having the same base-sequence were synthesized using the acridine-phosphoramidites. Although all the modified oligonucleotides lack a nucleobase at the intervening position, these double strands showed high thermal stability. The pentamethylene linker and the apyrimidinic systems were especially stabilized. At the same time, sharpness of the absorption spectra and a new fluorescent band of the acridine, due to the fixation of the environment around ACMA, were observed. Therefore, it is concluded that the acridine binds preferentially to the apyrimidinic site rather than the frameshift abasic site and that the surroundings of the acridine are strictly fixed at the microenvironmental level.

Full Text

The Full Text of this article is available as a PDF (128.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asseline U., Delarue M., Lancelot G., Toulmé F., Thuong N. T., Montenay-Garestier T., Hélène C. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3297–3301. doi: 10.1073/pnas.81.11.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asseline U., Hau J. F., Czernecki S., Le Diguarher T., Perlat M. C., Valery J. M., Thuong N. T. Synthesis and physicochemical properties of oligonucleotides built with either alpha-L or beta-L nucleotides units and covalently linked to an acridine derivative. Nucleic Acids Res. 1991 Aug 11;19(15):4067–4074. doi: 10.1093/nar/19.15.4067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asseline U., Toulme F., Thuong N. T., Delarue M., Montenay-Garestier T., Hélène C. Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment site. EMBO J. 1984 Apr;3(4):795–800. doi: 10.1002/j.1460-2075.1984.tb01887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bertrand J. R., Vasseur J. J., Rayner B., Imbach J. L., Paoletti J., Paoletti C., Malvy C. Synthesis, thermal stability and reactivity towards 9-aminoellipticine of double-stranded oligonucleotides containing a true abasic site. Nucleic Acids Res. 1989 Dec 25;17(24):10307–10319. doi: 10.1093/nar/17.24.10307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cantor C. R., Warshaw M. M., Shapiro H. Oligonucleotide interactions. 3. Circular dichroism studies of the conformation of deoxyoligonucleotides. Biopolymers. 1970;9(9):1059–1077. doi: 10.1002/bip.1970.360090909. [DOI] [PubMed] [Google Scholar]
  6. Constant J. F., Laûgaa P., Roques B. P., Lhomme J. Heterodimeric molecules including nucleic acid bases and 9-aminoacridine. Spectroscopic studies, conformations, and interactions with DNA. Biochemistry. 1988 May 31;27(11):3997–4003. doi: 10.1021/bi00411a016. [DOI] [PubMed] [Google Scholar]
  7. Cuniasse P., Fazakerley G. V., Guschlbauer W., Kaplan B. E., Sowers L. C. The abasic site as a challenge to DNA polymerase. A nuclear magnetic resonance study of G, C and T opposite a model abasic site. J Mol Biol. 1990 May 20;213(2):303–314. doi: 10.1016/S0022-2836(05)80192-5. [DOI] [PubMed] [Google Scholar]
  8. Cuniasse P., Sowers L. C., Eritja R., Kaplan B., Goodman M. F., Cognet J. A., Le Bret M., Guschlbauer W., Fazakerley G. V. Abasic frameshift in DNA. Solution conformation determined by proton NMR and molecular mechanics calculations. Biochemistry. 1989 Mar 7;28(5):2018–2026. doi: 10.1021/bi00431a009. [DOI] [PubMed] [Google Scholar]
  9. Fukui K., Morimoto M., Segawa H., Tanaka K., Shimidzu T. Synthesis and properties of an oligonucleotide modified with an acridine derivative at the artificial abasic site. Bioconjug Chem. 1996 May-Jun;7(3):349–355. doi: 10.1021/bc960019k. [DOI] [PubMed] [Google Scholar]
  10. Goodchild J. Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconjug Chem. 1990 May-Jun;1(3):165–187. doi: 10.1021/bc00003a001. [DOI] [PubMed] [Google Scholar]
  11. Letellier R., Taillandier E., Bertrand J. R., Malvy C. Molecular modelling of 9-aminoellipticine interactions with abasic oligonucleotides. J Biomol Struct Dyn. 1991 Dec;9(3):579–597. doi: 10.1080/07391102.1991.10507938. [DOI] [PubMed] [Google Scholar]
  12. Mann J. S., Shibata Y., Meehan T. Synthesis and properties of an oligodeoxynucleotide modified with a pyrene derivative at the 5'-phosphate. Bioconjug Chem. 1992 Nov-Dec;3(6):554–558. doi: 10.1021/bc00018a015. [DOI] [PubMed] [Google Scholar]
  13. Massari S., Dell'Antone P., Colonna R., Azzone G. F. Mechanism of atebrin fluorescence changes in energized submitochondrial particles. Biochemistry. 1974 Feb 26;13(5):1038–1046. doi: 10.1021/bi00702a032. [DOI] [PubMed] [Google Scholar]
  14. Mergny J. L., Garestier T., Rougée M., Lebedev A. V., Chassignol M., Thuong N. T., Hélène C. Fluorescence energy transfer between two triple helix-forming oligonucleotides bound to duplex DNA. Biochemistry. 1994 Dec 27;33(51):15321–15328. doi: 10.1021/bi00255a013. [DOI] [PubMed] [Google Scholar]
  15. Murphy C. J., Arkin M. R., Jenkins Y., Ghatlia N. D., Bossmann S. H., Turro N. J., Barton J. K. Long-range photoinduced electron transfer through a DNA helix. Science. 1993 Nov 12;262(5136):1025–1029. doi: 10.1126/science.7802858. [DOI] [PubMed] [Google Scholar]
  16. Nastasi M., Morris J. M., Rayner D. M., Seligy V. L., Szabo A. G., Williams D. F., Williams R. E., Yip R. W. Structural implications of the electronic spectra of quinacrine-deoxyribonucleic acid complexes in the ultraviolet region (250-300 nm). J Am Chem Soc. 1976 Jun 23;98(13):3979–3986. doi: 10.1021/ja00429a039. [DOI] [PubMed] [Google Scholar]
  17. Nelson J. W., Tinoco I., Jr Ethidium ion binds more strongly to a DNA double helix with a bulged cytosine than to a regular double helix. Biochemistry. 1985 Nov 5;24(23):6416–6421. doi: 10.1021/bi00344a016. [DOI] [PubMed] [Google Scholar]
  18. Pachmann U., Rigler R. Quantum yield of acridines interacting with DNA of defined sequence. A basis for the explanation of acridine bands in chromosomes. Exp Cell Res. 1972 Jun;72(2):602–608. doi: 10.1016/0014-4827(72)90045-6. [DOI] [PubMed] [Google Scholar]
  19. Singh M. P., Hill G. C., Péoc'h D., Rayner B., Imbach J. L., Lown J. W. High-field NMR and restrained molecular modeling studies on a DNA heteroduplex containing a modified apurinic abasic site in the form of covalently linked 9-aminoellipticine. Biochemistry. 1994 Aug 30;33(34):10271–10285. doi: 10.1021/bi00200a007. [DOI] [PubMed] [Google Scholar]
  20. Sun J. S., François J. C., Montenay-Garestier T., Saison-Behmoaras T., Roig V., Thuong N. T., Hélène C. Sequence-specific intercalating agents: intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9198–9202. doi: 10.1073/pnas.86.23.9198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Woodson S. A., Crothers D. M. Binding of 9-aminoacridine to bulged-base DNA oligomers from a frame-shift hot spot. Biochemistry. 1988 Dec 13;27(25):8904–8914. doi: 10.1021/bi00425a006. [DOI] [PubMed] [Google Scholar]
  22. Young P. R., Kallenbach N. R. Binding of 9-aminoacridine to deoxydinucleoside phosphates of defined sequence: preferences and stereochemistry. J Mol Biol. 1981 Feb 5;145(4):785–813. doi: 10.1016/0022-2836(81)90315-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES