Skip to main content
Genetics logoLink to Genetics
. 2001 Nov;159(3):1059–1072. doi: 10.1093/genetics/159.3.1059

A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla.

K Galindo 1, D P Smith 1
PMCID: PMC1461854  PMID: 11729153

Abstract

We identified a large family of putative odorant-binding protein (OBP) genes in the genome of Drosophila melanogaster. Some of these genes are present in large clusters in the genome. Most members are expressed in various taste organs, including gustatory sensilla in the labellum, the pharyngeal labral sense organ, dorsal and ventral cibarial organs, as well as taste bristles located on the wings and tarsi. Some of the gustatory OBPs are expressed exclusively in taste organs, but most are expressed in both olfactory and gustatory sensilla. Multiple binding proteins can be coexpressed in the same gustatory sensillum. Cells in the tarsi that express OBPs are required for normal chemosensation mediated through the leg, as ablation of these cells dramatically reduces the sensitivity of the proboscis extension reflex to sucrose. Finally, we show that OBP genes expressed in the pharyngeal taste sensilla are still expressed in the poxneuro genetic background while OBPs expressed in the labellum are not. These findings support a broad role for members of the OBP family in gustation and olfaction and suggest that poxneuro is required for cell fate determination of labellar but not pharyngeal taste organs.

Full Text

The Full Text of this article is available as a PDF (322.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Bianchet M. A., Bains G., Pelosi P., Pevsner J., Snyder S. H., Monaco H. L., Amzel L. M. The three-dimensional structure of bovine odorant binding protein and its mechanism of odor recognition. Nat Struct Biol. 1996 Nov;3(11):934–939. doi: 10.1038/nsb1196-934. [DOI] [PubMed] [Google Scholar]
  4. Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991 Apr 5;65(1):175–187. doi: 10.1016/0092-8674(91)90418-x. [DOI] [PubMed] [Google Scholar]
  5. Cavener D. R. Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 1987 Feb 25;15(4):1353–1361. doi: 10.1093/nar/15.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen P., Nordstrom W., Gish B., Abrams J. M. grim, a novel cell death gene in Drosophila. Genes Dev. 1996 Jul 15;10(14):1773–1782. doi: 10.1101/gad.10.14.1773. [DOI] [PubMed] [Google Scholar]
  7. Clyne P. J., Warr C. G., Freeman M. R., Lessing D., Kim J., Carlson J. R. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron. 1999 Feb;22(2):327–338. doi: 10.1016/s0896-6273(00)81093-4. [DOI] [PubMed] [Google Scholar]
  8. Clyne P., Grant A., O'Connell R., Carlson J. R. Odorant response of individual sensilla on the Drosophila antenna. Invert Neurosci. 1997 Sep-Dec;3(2-3):127–135. doi: 10.1007/BF02480367. [DOI] [PubMed] [Google Scholar]
  9. Du G., Prestwich G. D. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry. 1995 Jul 11;34(27):8726–8732. doi: 10.1021/bi00027a023. [DOI] [PubMed] [Google Scholar]
  10. Gao Q., Yuan B., Chess A. Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat Neurosci. 2000 Aug;3(8):780–785. doi: 10.1038/77680. [DOI] [PubMed] [Google Scholar]
  11. Ghysen A., Dambly-Chaudière C. The specification of sensory neuron identity in Drosophila. Bioessays. 1993 May;15(5):293–298. doi: 10.1002/bies.950150502. [DOI] [PubMed] [Google Scholar]
  12. Hekmat-Scafe D. S., Dorit R. L., Carlson J. R. Molecular evolution of odorant-binding protein genes OS-E and OS-F in Drosophila. Genetics. 2000 May;155(1):117–127. doi: 10.1093/genetics/155.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hekmat-Scafe D. S., Steinbrecht R. A., Carlson J. R. Coexpression of two odorant-binding protein homologs in Drosophila: implications for olfactory coding. J Neurosci. 1997 Mar 1;17(5):1616–1624. doi: 10.1523/JNEUROSCI.17-05-01616.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hildebrand J. G., Shepherd G. M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci. 1997;20:595–631. doi: 10.1146/annurev.neuro.20.1.595. [DOI] [PubMed] [Google Scholar]
  15. Kaissling K. E. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses. 2001 Feb;26(2):125–150. doi: 10.1093/chemse/26.2.125. [DOI] [PubMed] [Google Scholar]
  16. Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
  17. Kim M. S., Repp A., Smith D. P. LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics. 1998 Oct;150(2):711–721. doi: 10.1093/genetics/150.2.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leal W. S., Nikonova L., Peng G. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett. 1999 Dec 24;464(1-2):85–90. doi: 10.1016/s0014-5793(99)01683-x. [DOI] [PubMed] [Google Scholar]
  19. Mount S. M., Burks C., Hertz G., Stormo G. D., White O., Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992 Aug 25;20(16):4255–4262. doi: 10.1093/nar/20.16.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nottebohm E., Usui A., Therianos S., Kimura K., Dambly-Chaudière C., Ghysen A. The gene poxn controls different steps of the formation of chemosensory organs in Drosophila. Neuron. 1994 Jan;12(1):25–34. doi: 10.1016/0896-6273(94)90149-x. [DOI] [PubMed] [Google Scholar]
  21. Park S. K., Shanbhag S. R., Wang Q., Hasan G., Steinbrecht R. A., Pikielny C. W. Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila melanogaster have different implications for their functions. Cell Tissue Res. 2000 Apr;300(1):181–192. doi: 10.1007/s004410000187. [DOI] [PubMed] [Google Scholar]
  22. Pelosi P. Perireceptor events in olfaction. J Neurobiol. 1996 May;30(1):3–19. doi: 10.1002/(SICI)1097-4695(199605)30:1<3::AID-NEU2>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  23. Pikielny C. W., Hasan G., Rouyer F., Rosbash M. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron. 1994 Jan;12(1):35–49. doi: 10.1016/0896-6273(94)90150-3. [DOI] [PubMed] [Google Scholar]
  24. Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. doi: 10.1016/b978-0-409-90042-2.50028-3. [DOI] [PubMed] [Google Scholar]
  25. Sandler B. H., Nikonova L., Leal W. S., Clardy J. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol. 2000 Feb;7(2):143–151. doi: 10.1016/s1074-5521(00)00078-8. [DOI] [PubMed] [Google Scholar]
  26. Scaloni A., Monti M., Angeli S., Pelosi P. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun. 1999 Dec 20;266(2):386–391. doi: 10.1006/bbrc.1999.1791. [DOI] [PubMed] [Google Scholar]
  27. Scott K., Brady R., Jr, Cravchik A., Morozov P., Rzhetsky A., Zuker C., Axel R. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell. 2001 Mar 9;104(5):661–673. doi: 10.1016/s0092-8674(01)00263-x. [DOI] [PubMed] [Google Scholar]
  28. Smith D. P., Ranganathan R., Hardy R. W., Marx J., Tsuchida T., Zuker C. S. Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. Science. 1991 Dec 6;254(5037):1478–1484. doi: 10.1126/science.1962207. [DOI] [PubMed] [Google Scholar]
  29. Stamnes M. A., Shieh B. H., Chuman L., Harris G. L., Zuker C. S. The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell. 1991 Apr 19;65(2):219–227. doi: 10.1016/0092-8674(91)90156-s. [DOI] [PubMed] [Google Scholar]
  30. Troemel E. R., Chou J. H., Dwyer N. D., Colbert H. A., Bargmann C. I. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell. 1995 Oct 20;83(2):207–218. doi: 10.1016/0092-8674(95)90162-0. [DOI] [PubMed] [Google Scholar]
  31. Vassar R., Chao S. K., Sitcheran R., Nuñez J. M., Vosshall L. B., Axel R. Topographic organization of sensory projections to the olfactory bulb. Cell. 1994 Dec 16;79(6):981–991. doi: 10.1016/0092-8674(94)90029-9. [DOI] [PubMed] [Google Scholar]
  32. Vogt R. G., Riddiford L. M. Pheromone binding and inactivation by moth antennae. Nature. 1981 Sep 10;293(5828):161–163. doi: 10.1038/293161a0. [DOI] [PubMed] [Google Scholar]
  33. Vosshall L. B., Amrein H., Morozov P. S., Rzhetsky A., Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell. 1999 Mar 5;96(5):725–736. doi: 10.1016/s0092-8674(00)80582-6. [DOI] [PubMed] [Google Scholar]
  34. Vosshall L. B., Wong A. M., Axel R. An olfactory sensory map in the fly brain. Cell. 2000 Jul 21;102(2):147–159. doi: 10.1016/s0092-8674(00)00021-0. [DOI] [PubMed] [Google Scholar]
  35. Wang Q., Hasan G., Pikielny C. W. Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. J Biol Chem. 1999 Apr 9;274(15):10309–10315. doi: 10.1074/jbc.274.15.10309. [DOI] [PubMed] [Google Scholar]
  36. Wang Y., Wright N. J., Guo H., Xie Z., Svoboda K., Malinow R., Smith D. P., Zhong Y. Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron. 2001 Jan;29(1):267–276. doi: 10.1016/s0896-6273(01)00196-9. [DOI] [PubMed] [Google Scholar]
  37. Wing J, Zhou L, Schwartz L, Nambu J. Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ. 1999 Feb;6(2):212–213. doi: 10.1038/sj.cdd.4400487. [DOI] [PubMed] [Google Scholar]
  38. Wojtasek H., Leal W. S. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J Biol Chem. 1999 Oct 22;274(43):30950–30956. doi: 10.1074/jbc.274.43.30950. [DOI] [PubMed] [Google Scholar]
  39. de Bruyne M., Foster K., Carlson J. R. Odor coding in the Drosophila antenna. Neuron. 2001 May;30(2):537–552. doi: 10.1016/s0896-6273(01)00289-6. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES