Skip to main content
Genetics logoLink to Genetics
. 2001 Nov;159(3):1339–1350. doi: 10.1093/genetics/159.3.1339

A multivalent pairing model of linkage analysis in autotetraploids.

S S Wu 1, R Wu 1, C X Ma 1, Z B Zeng 1, M C Yang 1, G Casella 1
PMCID: PMC1461864  PMID: 11729174

Abstract

Polyploidy has been recognized as an important step in the evolutionary diversification of flowering plants and may have a significant impact on plant breeding. Statistical analyses for linkage mapping in polyploid species can be difficult due to considerable complexities in polysomic inheritance. In this article, we develop a novel statistical method for linkage analysis of polymorphic markers in a full-sib family of autotetraploids. This method is established on multivalent pairings of homologous chromosomes at meiosis and can provide a simultaneous maximum-likelihood estimation of the double reduction frequencies of and recombination fraction between two markers. The EM algorithm is implemented to provide a tractable way for estimating relative proportions of different modes of gamete formation that generate identical gamete genotypes due to multivalent pairings. Extensive simulation studies were performed to demonstrate the statistical properties of this method. The implications of the new method for understanding the genome structure and organization of polyploid species are discussed.

Full Text

The Full Text of this article is available as a PDF (170.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Doerge R. W., Craig B. A. Model selection for quantitative trait locus analysis in polyploids. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7951–7956. doi: 10.1073/pnas.97.14.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Grivet L., D'Hont A., Roques D., Feldmann P., Lanaud C., Glaszmann J. C. RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics. 1996 Mar;142(3):987–1000. doi: 10.1093/genetics/142.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lander E. S., Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363–2367. doi: 10.1073/pnas.84.8.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Luo Z. W., Hackett C. A., Bradshaw J. E., McNicol J. W., Milbourne D. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics. 2001 Mar;157(3):1369–1385. doi: 10.1093/genetics/157.3.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Masterson J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science. 1994 Apr 15;264(5157):421–424. doi: 10.1126/science.264.5157.421. [DOI] [PubMed] [Google Scholar]
  6. Meyer R. C., Milbourne D., Hackett C. A., Bradshaw J. E., McNichol J. W., Waugh R. Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (Phytophthora infestans). Mol Gen Genet. 1998 Aug;259(2):150–160. doi: 10.1007/s004380050800. [DOI] [PubMed] [Google Scholar]
  7. Otto S. P., Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34:401–437. doi: 10.1146/annurev.genet.34.1.401. [DOI] [PubMed] [Google Scholar]
  8. Ripol M. I., Churchill G. A., da Silva J. A., Sorrells M. Statistical aspects of genetic mapping in autopolyploids. Gene. 1999 Jul 22;235(1-2):31–41. doi: 10.1016/s0378-1119(99)00218-8. [DOI] [PubMed] [Google Scholar]
  9. SVED J. A. THE RELATIONSHIP BETWEEN DIPLOID AND TETRAPLOID RECOMBINATION FREQUENCIES. Heredity (Edinb) 1964 Nov;19:585–596. doi: 10.1038/hdy.1964.72. [DOI] [PubMed] [Google Scholar]
  10. Silva J. A., Sorrells M. E., Burnquist W. L., Tanksley S. D. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome. 1993 Aug;36(4):782–791. doi: 10.1139/g93-103. [DOI] [PubMed] [Google Scholar]
  11. Soltis P. S., Soltis D. E. The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7051–7057. doi: 10.1073/pnas.97.13.7051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sybenga J. Preferential pairing estimates from multivalent frequencies in tetraploids. Genome. 1994 Dec;37(6):1045–1055. doi: 10.1139/g94-149. [DOI] [PubMed] [Google Scholar]
  13. Xie C., Xu S. Mapping quantitative trait loci in tetraploid populations. Genet Res. 2000 Aug;76(1):105–115. doi: 10.1017/s0016672399004395. [DOI] [PubMed] [Google Scholar]
  14. Yu K. F., Pauls K. P. Segregation of random amplified polymorphic DNA markers and strategies for molecular mapping in tetraploid alfalfa. Genome. 1993 Oct;36(5):844–851. doi: 10.1139/g93-112. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES