Abstract
Several quantitative trait loci (QTL) affecting muscle glycogen content and related traits were mapped to pig chromosome 15 using a three-generation intercross between Berkshire x Yorkshire pigs. On the basis of the QTL location the PRKAG3 (protein kinase, AMP-activated, gamma(3)-subunit) gene was considered to be a good candidate for the observed effects. Differences in the PRKAG3 gene sequences of the founder animals of the intercross were analyzed. The RN(-) mutation previously reported was not present in the cross but three missense substitutions and a polymorphic short interspersed element (SINE) were identified. To confirm the hypothesis that at least one of these mutations was associated with differences in meat quality, >1800 animals from several unrelated commercial lines were genotyped for the candidate substitutions and an association study was performed. The results demonstrate the presence of new economically important alleles of the PRKAG3 gene affecting the glycogen content in the muscle and the resulting meat quality. Haplotype analysis was shown to resolve the effects of PRKAG3 more clearly than analysis of individual polymorphisms. Because of their prevalence in the more common commercial breeds, the potential implications for the pig industry and consumers are considerably greater than the original discovery of the RN(-) mutation. Furthermore, these results illustrate that additional alleles of genes involved in major mutations may play a significant role in quantitative trait variation.
Full Text
The Full Text of this article is available as a PDF (127.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci. 1997 Jan;22(1):12–13. doi: 10.1016/s0968-0004(96)30046-7. [DOI] [PubMed] [Google Scholar]
- Bergeron R., Russell R. R., 3rd, Young L. H., Ren J. M., Marcucci M., Lee A., Shulman G. I. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol. 1999 May;276(5 Pt 1):E938–E944. doi: 10.1152/ajpendo.1999.276.5.E938. [DOI] [PubMed] [Google Scholar]
- CASS N. M., JAMES N. R., LINES V. Difficult direct laryngoscopy complicating intubation for anaesthesia. Br Med J. 1956 Mar 3;1(4965):488–489. doi: 10.1136/bmj.1.4965.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carling D., Hardie D. G. The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim Biophys Acta. 1989 Jun 15;1012(1):81–86. doi: 10.1016/0167-4889(89)90014-1. [DOI] [PubMed] [Google Scholar]
- Cheung P. C., Salt I. P., Davies S. P., Hardie D. G., Carling D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J. 2000 Mar 15;346(Pt 3):659–669. [PMC free article] [PubMed] [Google Scholar]
- Fryer L. G., Hajduch E., Rencurel F., Salt I. P., Hundal H. S., Hardie D. G., Carling D. Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes. 2000 Dec;49(12):1978–1985. doi: 10.2337/diabetes.49.12.1978. [DOI] [PubMed] [Google Scholar]
- Gao G., Fernandez C. S., Stapleton D., Auster A. S., Widmer J., Dyck J. R., Kemp B. E., Witters L. A. Non-catalytic beta- and gamma-subunit isoforms of the 5'-AMP-activated protein kinase. J Biol Chem. 1996 Apr 12;271(15):8675–8681. doi: 10.1074/jbc.271.15.8675. [DOI] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A., Elsen J. M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. doi: 10.1093/genetics/136.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardie D. G., Carling D., Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 1998;67:821–855. doi: 10.1146/annurev.biochem.67.1.821. [DOI] [PubMed] [Google Scholar]
- Hardie D. G., Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997 Jun 1;246(2):259–273. doi: 10.1111/j.1432-1033.1997.00259.x. [DOI] [PubMed] [Google Scholar]
- Hayashi T., Hirshman M. F., Kurth E. J., Winder W. W., Goodyear L. J. Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998 Aug;47(8):1369–1373. doi: 10.2337/diab.47.8.1369. [DOI] [PubMed] [Google Scholar]
- Holmes B. F., Kurth-Kraczek E. J., Winder W. W. Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol (1985) 1999 Nov;87(5):1990–1995. doi: 10.1152/jappl.1999.87.5.1990. [DOI] [PubMed] [Google Scholar]
- Huszar D., Lynch C. A., Fairchild-Huntress V., Dunmore J. H., Fang Q., Berkemeier L. R., Gu W., Kesterson R. A., Boston B. A., Cone R. D. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997 Jan 10;88(1):131–141. doi: 10.1016/s0092-8674(00)81865-6. [DOI] [PubMed] [Google Scholar]
- Jeon J. T., Amarger V., Rogel-Gaillard C., Robic A., Bongcam-Rudloff E., Paul S., Looft C., Milan D., Chardon P., Andersson L. Comparative analysis of a BAC contig of the porcine RN region and the human transcript map: implications for the cloning of trait loci. Genomics. 2001 Mar 15;72(3):297–303. doi: 10.1006/geno.2000.6495. [DOI] [PubMed] [Google Scholar]
- Jeon J. T., Carlborg O., Törnsten A., Giuffra E., Amarger V., Chardon P., Andersson-Eklund L., Andersson K., Hansson I., Lundström K. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet. 1999 Feb;21(2):157–158. doi: 10.1038/5938. [DOI] [PubMed] [Google Scholar]
- Kim K. S., Larsen N., Short T., Plastow G., Rothschild M. F. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm Genome. 2000 Feb;11(2):131–135. doi: 10.1007/s003350010025. [DOI] [PubMed] [Google Scholar]
- Kurth-Kraczek E. J., Hirshman M. F., Goodyear L. J., Winder W. W. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes. 1999 Aug;48(8):1667–1671. doi: 10.2337/diabetes.48.8.1667. [DOI] [PubMed] [Google Scholar]
- Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
- Le Roy P., Naveau J., Elsen J. M., Sellier P. Evidence for a new major gene influencing meat quality in pigs. Genet Res. 1990 Feb;55(1):33–40. doi: 10.1017/s0016672300025179. [DOI] [PubMed] [Google Scholar]
- Malek M., Dekkers J. C., Lee H. K., Baas T. J., Prusa K., Huff-Lonergan E., Rothschild M. F. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm Genome. 2001 Aug;12(8):637–645. doi: 10.1007/s003350020019. [DOI] [PubMed] [Google Scholar]
- Milan D., Jeon J. T., Looft C., Amarger V., Robic A., Thelander M., Rogel-Gaillard C., Paul S., Iannuccelli N., Rask L. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science. 2000 May 19;288(5469):1248–1251. doi: 10.1126/science.288.5469.1248. [DOI] [PubMed] [Google Scholar]
- Nezer C., Moreau L., Brouwers B., Coppieters W., Detilleux J., Hanset R., Karim L., Kvasz A., Leroy P., Georges M. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet. 1999 Feb;21(2):155–156. doi: 10.1038/5935. [DOI] [PubMed] [Google Scholar]
- Poulter L., Ang S. G., Gibson B. W., Williams D. H., Holmes C. F., Caudwell F. B., Pitcher J., Cohen P. Analysis of the in vivo phosphorylation state of rabbit skeletal muscle glycogen synthase by fast-atom-bombardment mass spectrometry. Eur J Biochem. 1988 Aug 15;175(3):497–510. doi: 10.1111/j.1432-1033.1988.tb14222.x. [DOI] [PubMed] [Google Scholar]
- Stapleton D., Mitchelhill K. I., Gao G., Widmer J., Michell B. J., Teh T., House C. M., Fernandez C. S., Cox T., Witters L. A. Mammalian AMP-activated protein kinase subfamily. J Biol Chem. 1996 Jan 12;271(2):611–614. doi: 10.1074/jbc.271.2.611. [DOI] [PubMed] [Google Scholar]
- Stapleton D., Woollatt E., Mitchelhill K. I., Nicholl J. K., Fernandez C. S., Michell B. J., Witters L. A., Power D. A., Sutherland G. R., Kemp B. E. AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett. 1997 Jun 16;409(3):452–456. doi: 10.1016/s0014-5793(97)00569-3. [DOI] [PubMed] [Google Scholar]
- Thornton C., Snowden M. A., Carling D. Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J Biol Chem. 1998 May 15;273(20):12443–12450. doi: 10.1074/jbc.273.20.12443. [DOI] [PubMed] [Google Scholar]
- Woods A., Cheung P. C., Smith F. C., Davison M. D., Scott J., Beri R. K., Carling D. Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro. J Biol Chem. 1996 Apr 26;271(17):10282–10290. doi: 10.1074/jbc.271.17.10282. [DOI] [PubMed] [Google Scholar]
- Yeo G. S., Farooqi I. S., Aminian S., Halsall D. J., Stanhope R. G., O'Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998 Oct;20(2):111–112. doi: 10.1038/2404. [DOI] [PubMed] [Google Scholar]
- Zhang W., DePaoli-Roach A. A., Roach P. J. Mechanisms of multisite phosphorylation and inactivation of rabbit muscle glycogen synthase. Arch Biochem Biophys. 1993 Jul;304(1):219–225. doi: 10.1006/abbi.1993.1342. [DOI] [PubMed] [Google Scholar]