Skip to main content
Genetics logoLink to Genetics
. 2001 Nov;159(3):1191–1199. doi: 10.1093/genetics/159.3.1191

Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection.

A O Urrutia 1, L D Hurst 1
PMCID: PMC1461876  PMID: 11729162

Abstract

In numerous species, from bacteria to Drosophila, evidence suggests that selection acts even on synonymous codon usage: codon bias is greater in more abundantly expressed genes, the rate of synonymous evolution is lower in genes with greater codon bias, and there is consistency between genes in the same species in which codons are preferred. In contrast, in mammals, while nonequal use of alternative codons is observed, the bias is attributed to the background variance in nucleotide concentrations, reflected in the similar nucleotide composition of flanking noncoding and exonic third sites. However, a systematic examination of the covariants of codon usage controlling for background nucleotide content has yet to be performed. Here we present a new method to measure codon bias that corrects for background nucleotide content and apply this to 2396 human genes. Nearly all (99%) exhibit a higher amount of codon bias than expected by chance. The patterns associated with selectively driven codon bias are weakly recovered: Broadly expressed genes have a higher level of bias than do tissue-specific genes, the bias is higher for genes with lower rates of synonymous substitutions, and certain codons are repeatedly preferred. However, while these patterns are suggestive, the first two patterns appear to be methodological artifacts. The last pattern reflects in part biases in usage of nucleotide pairs. We conclude that we find no evidence for selection on codon usage in humans.

Full Text

The Full Text of this article is available as a PDF (107.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernardi G. The human genome: organization and evolutionary history. Annu Rev Genet. 1995;29:445–476. doi: 10.1146/annurev.ge.29.120195.002305. [DOI] [PubMed] [Google Scholar]
  2. Beutler E., Gelbart T., Han J. H., Koziol J. A., Beutler B. Evolution of the genome and the genetic code: selection at the dinucleotide level by methylation and polyribonucleotide cleavage. Proc Natl Acad Sci U S A. 1989 Jan;86(1):192–196. doi: 10.1073/pnas.86.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Committee on Genetics American Academy of Pediatrics: Health care supervision for children with Williams syndrome. Pediatrics. 2001 May;107(5):1192–1204. [PubMed] [Google Scholar]
  4. DeBry R. W., Marzluff W. F. Selection on silent sites in the rodent H3 histone gene family. Genetics. 1994 Sep;138(1):191–202. doi: 10.1093/genetics/138.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunn K. A., Bielawski J. P., Yang Z. Substitution rates in Drosophila nuclear genes: implications for translational selection. Genetics. 2001 Jan;157(1):295–305. doi: 10.1093/genetics/157.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duret L., Galtier N. The covariation between TpA deficiency, CpG deficiency, and G+C content of human isochores is due to a mathematical artifact. Mol Biol Evol. 2000 Nov;17(11):1620–1625. doi: 10.1093/oxfordjournals.molbev.a026261. [DOI] [PubMed] [Google Scholar]
  7. Duret L., Hurst L. D. The elevated GC content at exonic third sites is not evidence against neutralist models of isochore evolution. Mol Biol Evol. 2001 May;18(5):757–762. doi: 10.1093/oxfordjournals.molbev.a003858. [DOI] [PubMed] [Google Scholar]
  8. Duret L., Mouchiroud D. Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol Biol Evol. 2000 Jan;17(1):68–74. doi: 10.1093/oxfordjournals.molbev.a026239. [DOI] [PubMed] [Google Scholar]
  9. Duret L., Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4482–4487. doi: 10.1073/pnas.96.8.4482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eyre-Walker A. C. An analysis of codon usage in mammals: selection or mutation bias? J Mol Evol. 1991 Nov;33(5):442–449. doi: 10.1007/BF02103136. [DOI] [PubMed] [Google Scholar]
  11. Gouy M., Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. doi: 10.1093/nar/10.22.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gouy M., Milleret F., Mugnier C., Jacobzone M., Gautier C. ACNUC: a nucleic acid sequence data base and analysis system. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):121–127. doi: 10.1093/nar/12.1part1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kanaya S., Yamada Y., Kudo Y., Ikemura T. Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene. 1999 Sep 30;238(1):143–155. doi: 10.1016/s0378-1119(99)00225-5. [DOI] [PubMed] [Google Scholar]
  14. Karlin S., Mrázek J. What drives codon choices in human genes? J Mol Biol. 1996 Oct 4;262(4):459–472. doi: 10.1006/jmbi.1996.0528. [DOI] [PubMed] [Google Scholar]
  15. King J. L., Jukes T. H. Non-Darwinian evolution. Science. 1969 May 16;164(3881):788–798. doi: 10.1126/science.164.3881.788. [DOI] [PubMed] [Google Scholar]
  16. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  17. Levy J. P., Muldoon R. R., Zolotukhin S., Link C. J., Jr Retroviral transfer and expression of a humanized, red-shifted green fluorescent protein gene into human tumor cells. Nat Biotechnol. 1996 May;14(5):610–614. doi: 10.1038/nbt0596-610. [DOI] [PubMed] [Google Scholar]
  18. Marais G., Mouchiroud D., Duret L. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci U S A. 2001 Apr 24;98(10):5688–5692. doi: 10.1073/pnas.091427698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moriyama E. N., Powell J. R. Codon usage bias and tRNA abundance in Drosophila. J Mol Evol. 1997 Nov;45(5):514–523. doi: 10.1007/pl00006256. [DOI] [PubMed] [Google Scholar]
  20. Powell J. R., Moriyama E. N. Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7784–7790. doi: 10.1073/pnas.94.15.7784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sharp P. M., Averof M., Lloyd A. T., Matassi G., Peden J. F. DNA sequence evolution: the sounds of silence. Philos Trans R Soc Lond B Biol Sci. 1995 Sep 29;349(1329):241–247. doi: 10.1098/rstb.1995.0108. [DOI] [PubMed] [Google Scholar]
  22. Sharp P. M., Li W. H. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol. 1987 May;4(3):222–230. doi: 10.1093/oxfordjournals.molbev.a040443. [DOI] [PubMed] [Google Scholar]
  23. Sharp P. M., Tuohy T. M., Mosurski K. R. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986 Jul 11;14(13):5125–5143. doi: 10.1093/nar/14.13.5125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stenico M., Lloyd A. T., Sharp P. M. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res. 1994 Jul 11;22(13):2437–2446. doi: 10.1093/nar/22.13.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wells K. D., Foster J. A., Moore K., Pursel V. G., Wall R. J. Codon optimization, genetic insulation, and an rtTA reporter improve performance of the tetracycline switch. Transgenic Res. 1999 Oct;8(5):371–381. doi: 10.1023/a:1008952302539. [DOI] [PubMed] [Google Scholar]
  26. Zhou J., Liu W. J., Peng S. W., Sun X. Y., Frazer I. Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J Virol. 1999 Jun;73(6):4972–4982. doi: 10.1128/jvi.73.6.4972-4982.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zolotukhin S., Potter M., Hauswirth W. W., Guy J., Muzyczka N. A "humanized" green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol. 1996 Jul;70(7):4646–4654. doi: 10.1128/jvi.70.7.4646-4654.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES