Skip to main content
Genetics logoLink to Genetics
. 2001 Nov;159(3):1243–1257. doi: 10.1093/genetics/159.3.1243

Sex determination in the androdioecious plant Datisca glomerata and its dioecious sister species D. cannabina.

D E Wolf 1, J A Satkoski 1, K White 1, L H Rieseberg 1
PMCID: PMC1461886  PMID: 11729166

Abstract

Datisca glomerata is an androdioecious plant species containing male and hermaphroditic individuals. Molecular markers and crossing data suggest that, in both D. glomerata and its dioecious sister species D. cannabina, sex is determined by a single nuclear locus, at which maleness is dominant. Supporting this conclusion, an amplified fragment length polymorphism (AFLP) is heterozygous in males and homozygous recessive in hermaphrodites in three populations of the androdioecious species. Additionally, hermaphrodite x male crosses produced 1:1 sex ratios, while hermaphrodite x hermaphrodite crosses produced almost entirely hermaphroditic offspring. No perfectly sex-linked marker was found in the dioecious species, but all markers associated with sex mapped to a single linkage group and were heterozygous in the male parent. There was no sex-ratio heterogeneity among crosses within D. cannabina collections, but males from one collection produced highly biased sex ratios (94% females), suggesting that there may be sex-linked meiotic drive or a cytoplasmic sex-ratio factor. Interspecific crosses produced only male and female offspring, but no hermaphrodites, suggesting that hermaphroditism is recessive to femaleness. This comparative approach suggests that the hermaphrodite form arose in a dioecious population from a recessive mutation that allowed females to produce pollen.

Full Text

The Full Text of this article is available as a PDF (146.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carvalho A. B., Sampaio M. C., Varandas F. R., Klaczko L. B. An experimental demonstration of Fisher's principle: evolution of sexual proportion by natural selection. Genetics. 1998 Feb;148(2):719–731. doi: 10.1093/genetics/148.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charlesworth D., Laporte V. The male-sterility polymorphism of Silene vulgaris: analysis of genetic dat from two populations and comparison with Thymus vulgaris. Genetics. 1998 Nov;150(3):1267–1282. doi: 10.1093/genetics/150.3.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charlesworth D. Mating systems: save the male. Curr Biol. 1993 Mar;3(3):155–157. doi: 10.1016/0960-9822(93)90258-p. [DOI] [PubMed] [Google Scholar]
  4. Charnov E. L., Bull J. J. The primary sex ratio under environmental sex determination. J Theor Biol. 1989 Aug 22;139(4):431–436. doi: 10.1016/s0022-5193(89)80063-3. [DOI] [PubMed] [Google Scholar]
  5. Copenhaver G. P., Nickel K., Kuromori T., Benito M. I., Kaul S., Lin X., Bevan M., Murphy G., Harris B., Parnell L. D. Genetic definition and sequence analysis of Arabidopsis centromeres. Science. 1999 Dec 24;286(5449):2468–2474. doi: 10.1126/science.286.5449.2468. [DOI] [PubMed] [Google Scholar]
  6. Dudle D. A., Mutikainen P., Delph L. F. Genetics of sex determination in the gynodioecious species Lobelia siphilitica: evidence from two populations. Heredity (Edinb) 2001 Mar;86(Pt 3):265–276. doi: 10.1046/j.1365-2540.2001.00833.x. [DOI] [PubMed] [Google Scholar]
  7. Fitch D. H., Emmons S. W. Variable cell positions and cell contacts underlie morphological evolution of the rays in the male tails of nematodes related to Caenorhabditis elegans. Dev Biol. 1995 Aug;170(2):564–582. doi: 10.1006/dbio.1995.1237. [DOI] [PubMed] [Google Scholar]
  8. Haag E. S., Kimble J. Regulatory elements required for development of caenorhabditis elegans hermaphrodites are conserved in the tra-2 homologue of C. remanei, a male/female sister species. Genetics. 2000 May;155(1):105–116. doi: 10.1093/genetics/155.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hodgkin J., Doniach T. Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics. 1997 May;146(1):149–164. doi: 10.1093/genetics/146.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hodgkin J. Male Phenotypes and Mating Efficiency in CAENORHABDITIS ELEGANS. Genetics. 1983 Jan;103(1):43–64. doi: 10.1093/genetics/103.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuwabara P. E., Kimble J. Molecular genetics of sex determination in C. elegans. Trends Genet. 1992 May;8(5):164–168. doi: 10.1016/0168-9525(92)90218-s. [DOI] [PubMed] [Google Scholar]
  12. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  13. Lardon A., Georgiev S., Aghmir A., Le Merrer G., Negrutiu I. Sexual dimorphism in white campion: complex control of carpel number is revealed by y chromosome deletions. Genetics. 1999 Mar;151(3):1173–1185. doi: 10.1093/genetics/151.3.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lyttle T. W. Segregation distorters. Annu Rev Genet. 1991;25:511–557. doi: 10.1146/annurev.ge.25.120191.002455. [DOI] [PubMed] [Google Scholar]
  15. Orr H. A., Betancourt A. J. Haldane's sieve and adaptation from the standing genetic variation. Genetics. 2001 Feb;157(2):875–884. doi: 10.1093/genetics/157.2.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Skipper M., Milne C. A., Hodgkin J. Genetic and molecular analysis of fox-1, a numerator element involved in Caenorhabditis elegans primary sex determination. Genetics. 1999 Feb;151(2):617–631. doi: 10.1093/genetics/151.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Taylor D. R. Sex ratio in hybrids between Silene alba and Silene dioica: evidence for Y-linked restorers. Heredity (Edinb) 1994 Nov;73(Pt 5):518–526. doi: 10.1038/hdy.1994.150. [DOI] [PubMed] [Google Scholar]
  18. Taylor D. R. The genetic basis of sex ratio in Silene alba (= S. latifolia). Genetics. 1994 Feb;136(2):641–651. doi: 10.1093/genetics/136.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WESTERGAARD M. The mechanism of sex determination in dioecious flowering plants. Adv Genet. 1958;9:217–281. doi: 10.1016/s0065-2660(08)60163-7. [DOI] [PubMed] [Google Scholar]
  21. Yi S., Charlesworth B. Contrasting patterns of molecular evolution of the genes on the new and old sex chromosomes of Drosophila miranda. Mol Biol Evol. 2000 May;17(5):703–717. doi: 10.1093/oxfordjournals.molbev.a026349. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES