Skip to main content
Genetics logoLink to Genetics
. 2001 Dec;159(4):1595–1604. doi: 10.1093/genetics/159.4.1595

The Aspergillus nidulans musN gene encodes a RecQ helicase that interacts with the PI-3K-related kinase UVSB.

A F Hofmann 1, S D Harris 1
PMCID: PMC1461902  PMID: 11779799

Abstract

In Aspergillus nidulans, the uvsB gene encodes a member of the PI-3K-related kinase family of proteins. We have recently shown that UVSB is required for multiple aspects of the DNA damage response. Since the musN227 mutation is capable of partially suppressing defects caused by uvsB mutations, we sought to understand the mechanism underlying the suppression by cloning the musN gene. Here, we report that musN encodes a RecQ helicase with homology to S. pombe rqh1, S. cerevisiae sgs1, and human BLM and WRN. Phenotypic characterization of musN mutant alleles reveals that MUSN participates in the response to a variety of genotoxic agents. The slow growth and genotoxin sensitivity of a musN null mutant can be partially suppressed by a defect in homologous recombination caused by the uvsC114 mutation. In addition, we present evidence suggesting that MUSN may promote recovery from the DNA damage response. We suggest that a block to recovery caused by the musN227 mutation, coupled with the modest accumulation of recombination intermediates, can suppress defects caused by uvsB mutations. Finally, we report that another RecQ helicase, ORQA, performs a function that partially overlaps that of MUSN.

Full Text

The Full Text of this article is available as a PDF (227.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appleyard M. V., McPheat W. L., Stark M. J. A recQ family DNA helicase gene from Aspergillus nidulans. DNA Seq. 2000;11(3-4):315–319. [PubMed] [Google Scholar]
  3. Bashkirov V. I., King J. S., Bashkirova E. V., Schmuckli-Maurer J., Heyer W. D. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol Cell Biol. 2000 Jun;20(12):4393–4404. doi: 10.1128/mcb.20.12.4393-4404.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brody H., Griffith J., Cuticchia A. J., Arnold J., Timberlake W. E. Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids Res. 1991 Jun 11;19(11):3105–3109. doi: 10.1093/nar/19.11.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cogoni C., Macino G. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science. 1999 Dec 17;286(5448):2342–2344. doi: 10.1126/science.286.5448.2342. [DOI] [PubMed] [Google Scholar]
  6. Davey S., Han C. S., Ramer S. A., Klassen J. C., Jacobson A., Eisenberger A., Hopkins K. M., Lieberman H. B., Freyer G. A. Fission yeast rad12+ regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol Cell Biol. 1998 May;18(5):2721–2728. doi: 10.1128/mcb.18.5.2721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elledge S. J. Cell cycle checkpoints: preventing an identity crisis. Science. 1996 Dec 6;274(5293):1664–1672. doi: 10.1126/science.274.5293.1664. [DOI] [PubMed] [Google Scholar]
  8. FitzGerald M. G., Bean J. M., Hegde S. R., Unsal H., MacDonald D. J., Harkin D. P., Finkelstein D. M., Isselbacher K. J., Haber D. A. Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet. 1997 Mar;15(3):307–310. doi: 10.1038/ng0397-307. [DOI] [PubMed] [Google Scholar]
  9. Frei C., Gasser S. M. RecQ-like helicases: the DNA replication checkpoint connection. J Cell Sci. 2000 Aug;113(Pt 15):2641–2646. doi: 10.1242/jcs.113.15.2641. [DOI] [PubMed] [Google Scholar]
  10. Gangloff S., Soustelle C., Fabre F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet. 2000 Jun;25(2):192–194. doi: 10.1038/76055. [DOI] [PubMed] [Google Scholar]
  11. Harmon F. G., Kowalczykowski S. C. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev. 1998 Apr 15;12(8):1134–1144. doi: 10.1101/gad.12.8.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harris S. D., Kraus P. R. Regulation of septum formation in Aspergillus nidulans by a DNA damage checkpoint pathway. Genetics. 1998 Mar;148(3):1055–1067. doi: 10.1093/genetics/148.3.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harris S. D., Morrell J. L., Hamer J. E. Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics. 1994 Feb;136(2):517–532. doi: 10.1093/genetics/136.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hartman J. L., 4th, Garvik B., Hartwell L. Principles for the buffering of genetic variation. Science. 2001 Feb 9;291(5506):1001–1004. doi: 10.1126/science.291.5506.1001. [DOI] [PubMed] [Google Scholar]
  15. Hofmann A. F., Harris S. D. The Aspergillus nidulans uvsB gene encodes an ATM-related kinase required for multiple facets of the DNA damage response. Genetics. 2000 Apr;154(4):1577–1586. doi: 10.1093/genetics/154.4.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ichioka D., Itoh T., Itoh Y. An Aspergillus nidulans uvsC null mutant is deficient in homologous DNA integration. Mol Gen Genet. 2001 Jan;264(5):709–715. doi: 10.1007/s004380000359. [DOI] [PubMed] [Google Scholar]
  17. Karow J. K., Constantinou A., Li J. L., West S. C., Hickson I. D. The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6504–6508. doi: 10.1073/pnas.100448097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karow J. K., Wu L., Hickson I. D. RecQ family helicases: roles in cancer and aging. Curr Opin Genet Dev. 2000 Feb;10(1):32–38. doi: 10.1016/s0959-437x(99)00039-8. [DOI] [PubMed] [Google Scholar]
  19. Kim S. T., Lim D. S., Canman C. E., Kastan M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem. 1999 Dec 31;274(53):37538–37543. doi: 10.1074/jbc.274.53.37538. [DOI] [PubMed] [Google Scholar]
  20. Kraus P. R., Harris S. D. The Aspergillus nidulans snt genes are required for the regulation of septum formation and cell cycle checkpoints. Genetics. 2001 Oct;159(2):557–569. doi: 10.1093/genetics/159.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Käfer E., Mayor O. Genetic analysis of DNA repair in Aspergillus: evidence for different types of MMS-sensitive hyperrec mutants. Mutat Res. 1986 Jul;161(2):119–134. doi: 10.1016/0027-5107(86)90003-5. [DOI] [PubMed] [Google Scholar]
  22. McVey M., Kaeberlein M., Tissenbaum H. A., Guarente L. The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics. 2001 Apr;157(4):1531–1542. doi: 10.1093/genetics/157.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Myung K., Datta A., Chen C., Kolodner R. D. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet. 2001 Jan;27(1):113–116. doi: 10.1038/83673. [DOI] [PubMed] [Google Scholar]
  24. Osherov N., May G. Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics. 2000 Jun;155(2):647–656. doi: 10.1093/genetics/155.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pâques F., Haber J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999 Jun;63(2):349–404. doi: 10.1128/mmbr.63.2.349-404.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rhind N., Russell P. Checkpoints: it takes more than time to heal some wounds. Curr Biol. 2000 Dec 14;10(24):R908–R911. doi: 10.1016/s0960-9822(00)00849-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rong L., Klein H. L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J Biol Chem. 1993 Jan 15;268(2):1252–1259. [PubMed] [Google Scholar]
  28. Savitsky K., Bar-Shira A., Gilad S., Rotman G., Ziv Y., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995 Jun 23;268(5218):1749–1753. doi: 10.1126/science.7792600. [DOI] [PubMed] [Google Scholar]
  29. Stewart E., Chapman C. R., Al-Khodairy F., Carr A. M., Enoch T. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 1997 May 15;16(10):2682–2692. doi: 10.1093/emboj/16.10.2682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sung P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 1997 May 1;11(9):1111–1121. doi: 10.1101/gad.11.9.1111. [DOI] [PubMed] [Google Scholar]
  31. Swift M., Chase C. L., Morrell D. Cancer predisposition of ataxia-telangiectasia heterozygotes. Cancer Genet Cytogenet. 1990 May;46(1):21–27. doi: 10.1016/0165-4608(90)90004-t. [DOI] [PubMed] [Google Scholar]
  32. Swift M., Reitnauer P. J., Morrell D., Chase C. L. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med. 1987 May 21;316(21):1289–1294. doi: 10.1056/NEJM198705213162101. [DOI] [PubMed] [Google Scholar]
  33. Sánchez-Alonso P., Guzmán P. Organization of chromosome ends in Ustilago maydis. RecQ-like helicase motifs at telomeric regions. Genetics. 1998 Mar;148(3):1043–1054. doi: 10.1093/genetics/148.3.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tatusova T. A., Madden T. L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett. 1999 May 15;174(2):247–250. doi: 10.1111/j.1574-6968.1999.tb13575.x. [DOI] [PubMed] [Google Scholar]
  35. Wang Y., Cortez D., Yazdi P., Neff N., Elledge S. J., Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000 Apr 15;14(8):927–939. [PMC free article] [PubMed] [Google Scholar]
  36. Wolkow T. D., Mirabito P. M., Venkatram S., Hamer J. E. Hypomorphic bimA(APC3) alleles cause errors in chromosome metabolism that activate the DNA damage checkpoint blocking cytokinesis in Aspergillus nidulans. Genetics. 2000 Jan;154(1):167–179. doi: 10.1093/genetics/154.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhao P., Kafer E. Effects of mutagen-sensitive mus mutations on spontaneous mitotic recombination in Aspergillus. Genetics. 1992 Apr;130(4):717–728. doi: 10.1093/genetics/130.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van Heemst D., Swart K., Holub E. F., van Dijk R., Offenberg H. H., Goosen T., van den Broek H. W., Heyting C. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51. Mol Gen Genet. 1997 May;254(6):654–664. doi: 10.1007/s004380050463. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES