Skip to main content
Genetics logoLink to Genetics
. 2001 Dec;159(4):1405–1414. doi: 10.1093/genetics/159.4.1405

Growth-dependent DNA breakage and cell death in a gyrase mutant of Salmonella.

E Garí 1, L Bossi 1, N Figueroa-Bossi 1
PMCID: PMC1461903  PMID: 11779784

Abstract

A class of gyrase mutants of Salmonella enterica mimics the properties of bacteria exposed to quinolones. These mutants suffer spontaneous DNA breakage during normal growth and depend on recombinational repair for viability. Unlike quinolone-treated bacteria, however, they do not show accumulation of cleavable gyrase-DNA complexes. In recA or recB mutant backgrounds, the temperature-sensitive (ts) allele gyrA208 causes rapid cell death at 43 degrees. Here, we isolated "suppressor-of-death" mutations, that is, secondary changes that allow a gyrA208 recB double mutant to survive a prolonged exposure to 43 degrees and subsequently to form colonies at 28 degrees. In most isolates, the secondary change was itself a ts mutation. Three ts alleles were mapped in genes coding for amino acyl tRNA synthetases (alaS, glnS, and lysS). Allele alaS216 completely abolished DNA breakage in a gyrA208 recA double mutant. Likewise, treating this mutant with chloramphenicol prevented death and DNA damage at 43 degrees. Additional suppressors of gyrA208 lethality include rpoB mutations and, surprisingly, icd mutations inactivating isocitrate dehydrogenase. We postulate that the primary effect of the gyrase alteration is to hamper replication fork movement. Inhibiting DNA replication under conditions of continuing macromolecular synthesis ("unbalanced growth") activates a mechanism that causes DNA breakage and cell death, reminiscent of "thymineless" lethality.

Full Text

The Full Text of this article is available as a PDF (129.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad S. I., Kirk S. H., Eisenstark A. Thymine metabolism and thymineless death in prokaryotes and eukaryotes. Annu Rev Microbiol. 1998;52:591–625. doi: 10.1146/annurev.micro.52.1.591. [DOI] [PubMed] [Google Scholar]
  2. BARNER H. D., COHEN S. S. The isolation and properties of amino acid requiring mutants of a thymineless bacterium. J Bacteriol. 1957 Sep;74(3):350–355. doi: 10.1128/jb.74.3.350-355.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benson N. R., Goldman B. S. Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J Bacteriol. 1992 Mar;174(5):1673–1681. doi: 10.1128/jb.174.5.1673-1681.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger J. M. Type II DNA topoisomerases. Curr Opin Struct Biol. 1998 Feb;8(1):26–32. doi: 10.1016/s0959-440x(98)80006-7. [DOI] [PubMed] [Google Scholar]
  5. Blanc-Potard A. B., Bossi L. Phenotypic suppression of DNA gyrase deficiencies by a deletion lowering the gene dosage of a major tRNA in Salmonella typhimurium. J Bacteriol. 1994 Apr;176(8):2216–2226. doi: 10.1128/jb.176.8.2216-2226.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blanc-Potard A. B., Gari E., Spirito F., Figueroa-Bossi N., Bossi L. RNA polymerase (rpoB) mutants selected for increased resistance to gyrase inhibitors in Salmonella typhimurium. Mol Gen Genet. 1995 Jun 25;247(6):680–692. doi: 10.1007/BF00290399. [DOI] [PubMed] [Google Scholar]
  7. Blanc-Potard A. B., Gari E., Spirito F., Figueroa-Bossi N., Bossi L. RNA polymerase (rpoB) mutants selected for increased resistance to gyrase inhibitors in Salmonella typhimurium. Mol Gen Genet. 1995 Jun 25;247(6):680–692. doi: 10.1007/BF00290399. [DOI] [PubMed] [Google Scholar]
  8. Chen C. R., Malik M., Snyder M., Drlica K. DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol. 1996 May 17;258(4):627–637. doi: 10.1006/jmbi.1996.0274. [DOI] [PubMed] [Google Scholar]
  9. Clerch B., Garriga X., Torrents E., Rosales C. M., Llagostera M. Construction and characterization of two lexA mutants of Salmonella typhimurium with different UV sensitivities and UV mutabilities. J Bacteriol. 1996 May;178(10):2890–2896. doi: 10.1128/jb.178.10.2890-2896.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drlica K., Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev. 1997 Sep;61(3):377–392. doi: 10.1128/mmbr.61.3.377-392.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Figueroa-Bossi N., Coissac E., Netter P., Bossi L. Unsuspected prophage-like elements in Salmonella typhimurium. Mol Microbiol. 1997 Jul;25(1):161–173. doi: 10.1046/j.1365-2958.1997.4451807.x. [DOI] [PubMed] [Google Scholar]
  12. Garí E., Figueroa-Bossi N., Blanc-Potard A. B., Spirito F., Schmid M. B., Bossi L. A class of gyrase mutants of Salmonella typhimurium show quinolone-like lethality and require rec functions for viability. Mol Microbiol. 1996 Jul;21(1):111–122. doi: 10.1046/j.1365-2958.1996.6221338.x. [DOI] [PubMed] [Google Scholar]
  13. HANAWALT P. C., MAALOE O., CUMMINGS D. J., SCHAECHTER M. The normal DNA replication cycle. II. J Mol Biol. 1961 Apr;3:156–165. doi: 10.1016/s0022-2836(61)80042-9. [DOI] [PubMed] [Google Scholar]
  14. Heddle J. G., Barnard F. M., Wentzell L. M., Maxwell A. The interaction of drugs with DNA gyrase: a model for the molecular basis of quinolone action. Nucleosides Nucleotides Nucleic Acids. 2000 Aug;19(8):1249–1264. doi: 10.1080/15257770008033048. [DOI] [PubMed] [Google Scholar]
  15. Helling R. B., Kukora J. S. Nalidixic acd-resistant mutants of Escherichia coli deficient in isocitrate dehydrogenase. J Bacteriol. 1971 Mar;105(3):1224–1226. doi: 10.1128/jb.105.3.1224-1226.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hiasa H., Yousef D. O., Marians K. J. DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex. J Biol Chem. 1996 Oct 18;271(42):26424–26429. doi: 10.1074/jbc.271.42.26424. [DOI] [PubMed] [Google Scholar]
  17. Hussain K., Elliott E. J., Salmond G. P. The parD- mutant of Escherichia coli also carries a gyrAam mutation. The complete sequence of gyrA. Mol Microbiol. 1987 Nov;1(3):259–273. doi: 10.1111/j.1365-2958.1987.tb01932.x. [DOI] [PubMed] [Google Scholar]
  18. Kampranis S. C., Bates A. D., Maxwell A. A model for the mechanism of strand passage by DNA gyrase. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8414–8419. doi: 10.1073/pnas.96.15.8414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kato J., Nishimura Y., Suzuki H. Escherichia coli parA is an allele of the gyrB gene. Mol Gen Genet. 1989 May;217(1):178–181. doi: 10.1007/BF00330959. [DOI] [PubMed] [Google Scholar]
  20. Khodursky A. B., Peter B. J., Schmid M. B., DeRisi J., Botstein D., Brown P. O., Cozzarelli N. R. Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9419–9424. doi: 10.1073/pnas.97.17.9419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kohno T., Roth J. R. Proflavin mutagenesis of bacteria. J Mol Biol. 1974 Oct 15;89(1):17–32. doi: 10.1016/0022-2836(74)90160-0. [DOI] [PubMed] [Google Scholar]
  22. Lakshmi T. M., Helling R. B. Selection for citrate synthase deficiency in icd mutants of Escherichia coli. J Bacteriol. 1976 Jul;127(1):76–83. doi: 10.1128/jb.127.1.76-83.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levine C., Hiasa H., Marians K. J. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta. 1998 Oct 1;1400(1-3):29–43. doi: 10.1016/s0167-4781(98)00126-2. [DOI] [PubMed] [Google Scholar]
  24. Liu L. F., Wang J. C. Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7024–7027. doi: 10.1073/pnas.84.20.7024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lévêque F., Plateau P., Dessen P., Blanquet S. Homology of lysS and lysU, the two Escherichia coli genes encoding distinct lysyl-tRNA synthetase species. Nucleic Acids Res. 1990 Jan 25;18(2):305–312. doi: 10.1093/nar/18.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MAALOE O., HANAWALT P. C. Thymine deficiency and the normal DNA replication cycle. I. J Mol Biol. 1961 Apr;3:144–155. doi: 10.1016/s0022-2836(61)80041-7. [DOI] [PubMed] [Google Scholar]
  27. Menzel R., Gellert M. The biochemistry and biology of DNA gyrase. Adv Pharmacol. 1994;29A:39–69. doi: 10.1016/s1054-3589(08)60539-6. [DOI] [PubMed] [Google Scholar]
  28. Miesel L., Roth J. R. Salmonella recD mutations increase recombination in a short sequence transduction assay. J Bacteriol. 1994 Jul;176(13):4092–4103. doi: 10.1128/jb.176.13.4092-4103.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mukherjee A., Cao C., Lutkenhaus J. Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2885–2890. doi: 10.1073/pnas.95.6.2885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Plumbridge J. Organisation of the Escherichia coli chromosome between genes glnS and glnU, V. Mol Gen Genet. 1987 Oct;209(3):618–620. doi: 10.1007/BF00331173. [DOI] [PubMed] [Google Scholar]
  31. Rudd K. E., Bochner B. R., Cashel M., Roth J. R. Mutations in the spoT gene of Salmonella typhimurium: effects on his operon expression. J Bacteriol. 1985 Aug;163(2):534–542. doi: 10.1128/jb.163.2.534-542.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sanderson K. E., Hessel A., Rudd K. E. Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev. 1995 Jun;59(2):241–303. doi: 10.1128/mr.59.2.241-303.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schmieger H. Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet. 1972;119(1):75–88. doi: 10.1007/BF00270447. [DOI] [PubMed] [Google Scholar]
  34. Smith G. R. Homologous recombination in procaryotes. Microbiol Rev. 1988 Mar;52(1):1–28. doi: 10.1128/mr.52.1.1-28.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vinella D., D'Ari R., Jaffé A., Bouloc P. Penicillin binding protein 2 is dispensable in Escherichia coli when ppGpp synthesis is induced. EMBO J. 1992 Apr;11(4):1493–1501. doi: 10.1002/j.1460-2075.1992.tb05194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Willetts N. S., Clark A. J. Characteristics of some multiply recombination-deficient strains of Escherichia coli. J Bacteriol. 1969 Oct;100(1):231–239. doi: 10.1128/jb.100.1.231-239.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zechiedrich E. L., Khodursky A. B., Bachellier S., Schneider R., Chen D., Lilley D. M., Cozzarelli N. R. Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J Biol Chem. 2000 Mar 17;275(11):8103–8113. doi: 10.1074/jbc.275.11.8103. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES