Skip to main content
Genetics logoLink to Genetics
. 2001 Dec;159(4):1741–1749. doi: 10.1093/genetics/159.4.1741

Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism.

M Ruegger 1, C Chapple 1
PMCID: PMC1461910  PMID: 11779811

Abstract

The products of phenylpropanoid metabolism in Arabidopsis include the three fluorescent sinapate esters sinapoylglucose, sinapoylmalate, and sinapoylcholine. The sinapoylmalate that accumulates in cotyledons and leaves causes these organs to appear blue-green under ultraviolet (UV) illumination. To find novel genes acting in phenylpropanoid metabolism, Arabidopsis seedlings were screened under UV for altered fluorescence phenotypes caused by changes in sinapoylmalate content. This screen identified recessive mutations at four Reduced Epidermal Fluorescence (REF) loci that reduced leaf sinapoylmalate content. Further analyses showed that the ref mutations affected other aspects of phenylpropanoid metabolism and some led to perturbations in normal plant development. A second class of mutations at the Bright Trichomes 1 (BRT1) locus leads to modest reductions in sinapate ester content; however, the most notable phenotype of brt1 mutants is the development of hyperfluorescent trichomes that appear to contain elevated levels of sinapate esters when compared to the wild type. These results indicate that at least five new loci affecting the developmentally regulated accumulation of phenylpropanoid secondary metabolites in Arabidopsis, and the cell specificity of their distribution, have been identified by screening for altered UV fluorescence phenotypes.

Full Text

The Full Text of this article is available as a PDF (288.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baucher M., Chabbert B., Pilate G., Van Doorsselaere J., Tollier M. T., Petit-Conil M., Cornu D., Monties B., Van Montagu M., Inze D. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar. Plant Physiol. 1996 Dec;112(4):1479–1490. doi: 10.1104/pp.112.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Binns A. N., Chen R. H., Wood H. N., Lynn D. G. Cell division promoting activity of naturally occurring dehydrodiconiferyl glucosides: do cell wall components control cell division? Proc Natl Acad Sci U S A. 1987 Feb;84(4):980–984. doi: 10.1073/pnas.84.4.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burbulis I. E., Iacobucci M., Shirley B. W. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell. 1996 Jun;8(6):1013–1025. doi: 10.1105/tpc.8.6.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapple C. C., Vogt T., Ellis B. E., Somerville C. R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell. 1992 Nov;4(11):1413–1424. doi: 10.1105/tpc.4.11.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dooner H. K., Robbins T. P., Jorgensen R. A. Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet. 1991;25:173–199. doi: 10.1146/annurev.ge.25.120191.001133. [DOI] [PubMed] [Google Scholar]
  6. Halpin C., Holt K., Chojecki J., Oliver D., Chabbert B., Monties B., Edwards K., Barakate A., Foxon G. A. Brown-midrib maize (bm1)--a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J. 1998 Jun;14(5):545–553. doi: 10.1046/j.1365-313x.1998.00153.x. [DOI] [PubMed] [Google Scholar]
  7. Halpin C., Holt K., Chojecki J., Oliver D., Chabbert B., Monties B., Edwards K., Barakate A., Foxon G. A. Brown-midrib maize (bm1)--a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J. 1998 Jun;14(5):545–553. doi: 10.1046/j.1365-313x.1998.00153.x. [DOI] [PubMed] [Google Scholar]
  8. Humphreys J. M., Hemm M. R., Chapple C. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10045–10050. doi: 10.1073/pnas.96.18.10045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jin H., Cominelli E., Bailey P., Parr A., Mehrtens F., Jones J., Tonelli C., Weisshaar B., Martin C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 2000 Nov 15;19(22):6150–6161. doi: 10.1093/emboj/19.22.6150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC, Boerjan W, Ferret V, V, De Nadai V Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping . Plant Physiol. 1999 Jan;119(1):153–164. doi: 10.1104/pp.119.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lehfeldt C., Shirley A. M., Meyer K., Ruegger M. O., Cusumano J. C., Viitanen P. V., Strack D., Chapple C. Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell. 2000 Aug;12(8):1295–1306. doi: 10.1105/tpc.12.8.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Li J., Ou-Lee T. M., Raba R., Amundson R. G., Last R. L. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell. 1993 Feb;5(2):171–179. doi: 10.1105/tpc.5.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lorenzen M., Racicot V., Strack D., Chapple C. Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of arabidopsis. Plant Physiol. 1996 Dec;112(4):1625–1630. doi: 10.1104/pp.112.4.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meyer K., Cusumano J. C., Somerville C., Chapple C. C. Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6869–6874. doi: 10.1073/pnas.93.14.6869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meyer K., Shirley A. M., Cusumano J. C., Bell-Lelong D. A., Chapple C. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6619–6623. doi: 10.1073/pnas.95.12.6619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mo Y., Nagel C., Taylor L. P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7213–7217. doi: 10.1073/pnas.89.15.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Napoli C., Lemieux C., Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell. 1990 Apr;2(4):279–289. doi: 10.1105/tpc.2.4.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orr J. D., Lynn D. G. Biosynthesis of dehydrodiconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol. 1992 Jan;98(1):343–352. doi: 10.1104/pp.98.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Osakabe K., Tsao C. C., Li L., Popko J. L., Umezawa T., Carraway D. T., Smeltzer R. H., Joshi C. P., Chiang V. L. Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8955–8960. doi: 10.1073/pnas.96.16.8955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ralph J., MacKay J. J., Hatfield R. D., O'Malley D. M., Whetten R. W., Sederoff R. R. Abnormal lignin in a loblolly pine mutant. Science. 1997 Jul 11;277(5323):235–239. doi: 10.1126/science.277.5323.235. [DOI] [PubMed] [Google Scholar]
  21. Ruegger M., Meyer K., Cusumano J. C., Chapple C. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiol. 1999 Jan;119(1):101–110. doi: 10.1104/pp.119.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shirley B. W., Kubasek W. L., Storz G., Bruggemann E., Koornneef M., Ausubel F. M., Goodman H. M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 1995 Nov;8(5):659–671. doi: 10.1046/j.1365-313x.1995.08050659.x. [DOI] [PubMed] [Google Scholar]
  23. Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco . Plant Cell. 1998 Feb;10(2):135–154. doi: 10.1105/tpc.10.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Teutonico R. A., Dudley M. W., Orr J. D., Lynn D. G., Binns A. N. Activity and accumulation of cell division-promoting phenolics in tobacco tissue cultures. Plant Physiol. 1991 Sep;97(1):288–297. doi: 10.1104/pp.97.1.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vignols F., Rigau J., Torres M. A., Capellades M., Puigdomènech P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell. 1995 Apr;7(4):407–416. doi: 10.1105/tpc.7.4.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhong R, III WH, Negrel J, Ye ZH. Dual methylation pathways in lignin biosynthesis . Plant Cell. 1998 Dec;10(12):2033–2046. doi: 10.1105/tpc.10.12.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van der Krol A. R., Mur L. A., Beld M., Mol J. N., Stuitje A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell. 1990 Apr;2(4):291–299. doi: 10.1105/tpc.2.4.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van der Meer I. M., Stam M. E., van Tunen A. J., Mol J. N., Stuitje A. R. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell. 1992 Mar;4(3):253–262. doi: 10.1105/tpc.4.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES