Skip to main content
Genetics logoLink to Genetics
. 2001 Dec;159(4):1527–1538. doi: 10.1093/genetics/159.4.1527

Differential regulation of two Ca(2+) influx systems by pheromone signaling in Saccharomyces cerevisiae.

E M Muller 1, E G Locke 1, K W Cunningham 1
PMCID: PMC1461924  PMID: 11779794

Abstract

The budding yeast Saccharomyces cerevisiae generates calcium signals during the response to mating pheromones that promote survival of unmated cells. A Ca(2+) channel composed of Cch1p and Mid1p was previously shown to be necessary for the production of these calcium signals. However, we find that the Cch1p-Mid1p high-affinity Ca(2+) influx system (HACS) contributes very little to signaling or survival after treatment with alpha-factor in rich media. HACS activity was much greater after calcineurin inactivation or inhibition, suggesting the Cch1p-Mid1p Ca(2+) channel is subject to direct or indirect regulation by calcineurin. Instead a distinct low-affinity Ca(2+) influx system (LACS) was stimulated by pheromone signaling in rich medium. LACS activity was insensitive to calcineurin activity, independent of Cch1p and Mid1p, and sufficient to elevate cytosolic free Ca(2+) concentrations ([Ca(2+)]c) in spite of its 16-fold lower affinity for Ca(2+). Overexpression of Ste12p or constitutive activation of this transcription factor in dig1 dig2 double mutants had no effect on LACS activity but stimulated HACS activity when calcineurin was also inactivated. Ste12p activation had no effect on Cch1p or Mid1p abundance, suggesting the involvement of another target of Ste12p in HACS stimulation. LACS activation required treatment with mating pheromone even in dig1 dig2 double mutants and also required FAR1, SPA2, and BNI1, which are necessary for proper cell cycle arrest and polarized morphogenesis. These results show that distinct branches of the pheromone-signaling pathway independently regulate HACS and LACS activities, either of which can promote survival during long-term responses.

Full Text

The Full Text of this article is available as a PDF (270.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bading H., Ginty D. D., Greenberg M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science. 1993 Apr 9;260(5105):181–186. doi: 10.1126/science.8097060. [DOI] [PubMed] [Google Scholar]
  2. Blondel M., Alepuz P. M., Huang L. S., Shaham S., Ammerer G., Peter M. Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p. Genes Dev. 1999 Sep 1;13(17):2284–2300. doi: 10.1101/gad.13.17.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butty A. C., Pryciak P. M., Huang L. S., Herskowitz I., Peter M. The role of Far1p in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating. Science. 1998 Nov 20;282(5393):1511–1516. doi: 10.1126/science.282.5393.1511. [DOI] [PubMed] [Google Scholar]
  4. Chan R. K., Otte C. A. Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol. 1982 Jan;2(1):11–20. doi: 10.1128/mcb.2.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang F., Herskowitz I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell. 1990 Nov 30;63(5):999–1011. doi: 10.1016/0092-8674(90)90503-7. [DOI] [PubMed] [Google Scholar]
  6. Cherkasova V., Lyons D. M., Elion E. A. Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. Genetics. 1999 Mar;151(3):989–1004. doi: 10.1093/genetics/151.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Company M., Adler C., Errede B. Identification of a Ty1 regulatory sequence responsive to STE7 and STE12. Mol Cell Biol. 1988 Jun;8(6):2545–2554. doi: 10.1128/mcb.8.6.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cook J. G., Bardwell L., Kron S. J., Thorner J. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev. 1996 Nov 15;10(22):2831–2848. doi: 10.1101/gad.10.22.2831. [DOI] [PubMed] [Google Scholar]
  9. Cunningham K. W., Fink G. R. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol. 1996 May;16(5):2226–2237. doi: 10.1128/mcb.16.5.2226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cunningham K. W., Fink G. R. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol. 1994 Feb;124(3):351–363. doi: 10.1083/jcb.124.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cyert M. S., Kunisawa R., Kaim D., Thorner J. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7376–7380. doi: 10.1073/pnas.88.16.7376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cyert M. S., Thorner J. Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol Cell Biol. 1992 Aug;12(8):3460–3469. doi: 10.1128/mcb.12.8.3460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Darszon A., Labarca P., Nishigaki T., Espinosa F. Ion channels in sperm physiology. Physiol Rev. 1999 Apr;79(2):481–510. doi: 10.1152/physrev.1999.79.2.481. [DOI] [PubMed] [Google Scholar]
  14. Dorer R., Pryciak P. M., Hartwell L. H. Saccharomyces cerevisiae cells execute a default pathway to select a mate in the absence of pheromone gradients. J Cell Biol. 1995 Nov;131(4):845–861. doi: 10.1083/jcb.131.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Elion E. A., Satterberg B., Kranz J. E. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1. Mol Biol Cell. 1993 May;4(5):495–510. doi: 10.1091/mbc.4.5.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fischer M., Schnell N., Chattaway J., Davies P., Dixon G., Sanders D. The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett. 1997 Dec 15;419(2-3):259–262. doi: 10.1016/s0014-5793(97)01466-x. [DOI] [PubMed] [Google Scholar]
  17. Geiser J. R., van Tuinen D., Brockerhoff S. E., Neff M. M., Davis T. N. Can calmodulin function without binding calcium? Cell. 1991 Jun 14;65(6):949–959. doi: 10.1016/0092-8674(91)90547-c. [DOI] [PubMed] [Google Scholar]
  18. Guarente L., Mason T. Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell. 1983 Apr;32(4):1279–1286. doi: 10.1016/0092-8674(83)90309-4. [DOI] [PubMed] [Google Scholar]
  19. Hardingham G. E., Cruzalegui F. H., Chawla S., Bading H. Mechanisms controlling gene expression by nuclear calcium signals. Cell Calcium. 1998 Feb-Mar;23(2-3):131–134. doi: 10.1016/s0143-4160(98)90111-7. [DOI] [PubMed] [Google Scholar]
  20. Iida H., Nakamura H., Ono T., Okumura M. S., Anraku Y. MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol. 1994 Dec;14(12):8259–8271. doi: 10.1128/mcb.14.12.8259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iida H., Yagawa Y., Anraku Y. Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J Biol Chem. 1990 Aug 5;265(22):13391–13399. [PubMed] [Google Scholar]
  22. Kanzaki M., Nagasawa M., Kojima I., Sato C., Naruse K., Sokabe M., Iida H. Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science. 1999 Aug 6;285(5429):882–886. doi: 10.1126/science.285.5429.882. [DOI] [PubMed] [Google Scholar]
  23. Katzmann D. J., Epping E. A., Moye-Rowley W. S. Mutational disruption of plasma membrane trafficking of Saccharomyces cerevisiae Yor1p, a homologue of mammalian multidrug resistance protein. Mol Cell Biol. 1999 Apr;19(4):2998–3009. doi: 10.1128/mcb.19.4.2998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Locke E. G., Bonilla M., Liang L., Takita Y., Cunningham K. W. A homolog of voltage-gated Ca(2+) channels stimulated by depletion of secretory Ca(2+) in yeast. Mol Cell Biol. 2000 Sep;20(18):6686–6694. doi: 10.1128/mcb.20.18.6686-6694.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matheos D. P., Kingsbury T. J., Ahsan U. S., Cunningham K. W. Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev. 1997 Dec 15;11(24):3445–3458. doi: 10.1101/gad.11.24.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mendizabal I., Rios G., Mulet J. M., Serrano R., de Larrinoa I. F. Yeast putative transcription factors involved in salt tolerance. FEBS Lett. 1998 Mar 27;425(2):323–328. doi: 10.1016/s0014-5793(98)00249-x. [DOI] [PubMed] [Google Scholar]
  27. Miller R. K., Matheos D., Rose M. D. The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J Cell Biol. 1999 Mar 8;144(5):963–975. doi: 10.1083/jcb.144.5.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moser M. J., Geiser J. R., Davis T. N. Ca2+-calmodulin promotes survival of pheromone-induced growth arrest by activation of calcineurin and Ca2+-calmodulin-dependent protein kinase. Mol Cell Biol. 1996 Sep;16(9):4824–4831. doi: 10.1128/mcb.16.9.4824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nern A., Arkowitz R. A. A Cdc24p-Far1p-Gbetagamma protein complex required for yeast orientation during mating. J Cell Biol. 1999 Mar 22;144(6):1187–1202. doi: 10.1083/jcb.144.6.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ohsumi Y., Anraku Y. Specific induction of Ca2+ transport activity in MATa cells of Saccharomyces cerevisiae by a mating pheromone, alpha factor. J Biol Chem. 1985 Sep 5;260(19):10482–10486. [PubMed] [Google Scholar]
  31. Paidhungat M., Garrett S. A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol. 1997 Nov;17(11):6339–6347. doi: 10.1128/mcb.17.11.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peter M., Gartner A., Horecka J., Ammerer G., Herskowitz I. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell. 1993 May 21;73(4):747–760. doi: 10.1016/0092-8674(93)90254-n. [DOI] [PubMed] [Google Scholar]
  33. Shimada Y., Gulli M. P., Peter M. Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating. Nat Cell Biol. 2000 Feb;2(2):117–124. doi: 10.1038/35000073. [DOI] [PubMed] [Google Scholar]
  34. Stathopoulos A. M., Cyert M. S. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 1997 Dec 15;11(24):3432–3444. doi: 10.1101/gad.11.24.3432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Swann K., Parrington J. Mechanism of Ca2+ release at fertilization in mammals. J Exp Zool. 1999 Oct 15;285(3):267–275. doi: 10.1002/(sici)1097-010x(19991015)285:3<267::aid-jez10>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  36. Tanahashi H., Ito T., Inouye S., Tsuji F. I., Sakaki Y. Photoprotein aequorin: use as a reporter enzyme in studying gene expression in mammalian cells. Gene. 1990 Dec 15;96(2):249–255. doi: 10.1016/0378-1119(90)90260-x. [DOI] [PubMed] [Google Scholar]
  37. Tyers M., Futcher B. Far1 and Fus3 link the mating pheromone signal transduction pathway to three G1-phase Cdc28 kinase complexes. Mol Cell Biol. 1993 Sep;13(9):5659–5669. doi: 10.1128/mcb.13.9.5659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Valtz N., Peter M., Herskowitz I. FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J Cell Biol. 1995 Nov;131(4):863–873. doi: 10.1083/jcb.131.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wallis J. W., Chrebet G., Brodsky G., Rolfe M., Rothstein R. A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell. 1989 Jul 28;58(2):409–419. doi: 10.1016/0092-8674(89)90855-6. [DOI] [PubMed] [Google Scholar]
  40. Wassarman P. M. Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion. Cell. 1999 Jan 22;96(2):175–183. doi: 10.1016/s0092-8674(00)80558-9. [DOI] [PubMed] [Google Scholar]
  41. Withee J. L., Mulholland J., Jeng R., Cyert M. S. An essential role of the yeast pheromone-induced Ca2+ signal is to activate calcineurin. Mol Biol Cell. 1997 Feb;8(2):263–277. doi: 10.1091/mbc.8.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES