Abstract
Mitochondrial translation is largely membrane-associated in S. cerevisiae. Recently, we discovered that the matrix protein Nam1p binds the amino-terminal domain of yeast mtRNA polymerase to couple translation and/or RNA-processing events to transcription. To gain additional insight into these transcription-coupled processes, we performed a genetic screen for genes that suppress the petite phenotype of a point mutation in mtRNA polymerase (rpo41-R129D) when overexpressed. One suppressor identified in this screen was SLS1, which encodes a mitochondrial membrane protein required for assembly of respiratory-chain enzyme complexes III and IV. The mtRNA-processing defects associated with the rpo41-R129D mutation were corrected in the suppressed strain, linking Sls1p to a pathway that includes mtRNA polymerase and Nam1p. This was supported by the observation that SLS1 overexpression rescued the petite phenotype of a NAM1 null mutation. In contrast, overexpression of Nam1p did not rescue the petite phenotype of a SLS1 null mutation, indicating that Nam1p and Sls1p are not functionally redundant but rather exist in an ordered pathway. On the basis of these data, a model in which Nam1p coordinates the delivery of newly synthesized transcripts to the membrane, where Sls1p directs or regulates their subsequent handling by membrane-bound factors involved in translation, is proposed.
Full Text
The Full Text of this article is available as a PDF (175.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asher E. B., Groudinsky O., Dujardin G., Altamura N., Kermorgant M., Slonimski P. P. Novel class of nuclear genes involved in both mRNA splicing and protein synthesis in Saccharomyces cerevisiae mitochondria. Mol Gen Genet. 1989 Feb;215(3):517–528. doi: 10.1007/BF00427051. [DOI] [PubMed] [Google Scholar]
- Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
- Costanzo M. C., Fox T. D. Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet. 1990;24:91–113. doi: 10.1146/annurev.ge.24.120190.000515. [DOI] [PubMed] [Google Scholar]
- Dieckmann C. L., Staples R. R. Regulation of mitochondrial gene expression in Saccharomyces cerevisiae. Int Rev Cytol. 1994;152:145–181. doi: 10.1016/s0074-7696(08)62556-5. [DOI] [PubMed] [Google Scholar]
- Elledge S. J., Mulligan J. T., Ramer S. W., Spottswood M., Davis R. W. Lambda YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1731–1735. doi: 10.1073/pnas.88.5.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green-Willms N. S., Butler C. A., Dunstan H. M., Fox T. D. Pet111p, an inner membrane-bound translational activator that limits expression of the Saccharomyces cerevisiae mitochondrial gene COX2. J Biol Chem. 2000 Dec 5;276(9):6392–6397. doi: 10.1074/jbc.M009856200. [DOI] [PubMed] [Google Scholar]
- Greenleaf A. L., Kelly J. L., Lehman I. R. Yeast RPO41 gene product is required for transcription and maintenance of the mitochondrial genome. Proc Natl Acad Sci U S A. 1986 May;83(10):3391–3394. doi: 10.1073/pnas.83.10.3391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groudinsky O., Bousquet I., Wallis M. G., Slonimski P. P., Dujardin G. The NAM1/MTF2 nuclear gene product is selectively required for the stability and/or processing of mitochondrial transcripts of the atp6 and of the mosaic, cox1 and cytb genes in Saccharomyces cerevisiae. Mol Gen Genet. 1993 Sep;240(3):419–427. doi: 10.1007/BF00280396. [DOI] [PubMed] [Google Scholar]
- Liu M., Spremulli L. Interaction of mammalian mitochondrial ribosomes with the inner membrane. J Biol Chem. 2000 Sep 22;275(38):29400–29406. doi: 10.1074/jbc.M002173200. [DOI] [PubMed] [Google Scholar]
- Manthey G. M., Przybyla-Zawislak B. D., McEwen J. E. The Saccharomyces cerevisiae Pet309 protein is embedded in the mitochondrial inner membrane. Eur J Biochem. 1998 Jul 1;255(1):156–161. doi: 10.1046/j.1432-1327.1998.2550156.x. [DOI] [PubMed] [Google Scholar]
- Marzuki S., Cobon G. S., Crowfoot P. D., Linnane A. W. Biogenesis of mitochondria. The effects of membrane unsaturated fatty acid content on the activity and assembly of the yeast mitochondrial protein-synthesizing system. Arch Biochem Biophys. 1975 Aug;169(2):591–600. doi: 10.1016/0003-9861(75)90203-9. [DOI] [PubMed] [Google Scholar]
- Masters B. S., Stohl L. L., Clayton D. A. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell. 1987 Oct 9;51(1):89–99. doi: 10.1016/0092-8674(87)90013-4. [DOI] [PubMed] [Google Scholar]
- McMullin T. W., Fox T. D. COX3 mRNA-specific translational activator proteins are associated with the inner mitochondrial membrane in Saccharomyces cerevisiae. J Biol Chem. 1993 Jun 5;268(16):11737–11741. [PubMed] [Google Scholar]
- McMullin T. W., Haffter P., Fox T. D. A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Mol Cell Biol. 1990 Sep;10(9):4590–4595. doi: 10.1128/mcb.10.9.4590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostrander D. B., Zhang M., Mileykovskaya E., Rho M., Dowhan W. Lack of mitochondrial anionic phospholipids causes an inhibition of translation of protein components of the electron transport chain. A yeast genetic model system for the study of anionic phospholipid function in mitochondria. J Biol Chem. 2001 May 2;276(27):25262–25272. doi: 10.1074/jbc.M103689200. [DOI] [PubMed] [Google Scholar]
- Pel H. J., Grivell L. A. The biology of yeast mitochondrial introns. Mol Biol Rep. 1993 Jun;18(1):1–13. doi: 10.1007/BF01006890. [DOI] [PubMed] [Google Scholar]
- Rodeheffer M. S., Boone B. E., Bryan A. C., Shadel G. S. Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J Biol Chem. 2000 Dec 15;276(11):8616–8622. doi: 10.1074/jbc.M009901200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouillard J. M., Dufour M. E., Theunissen B., Mandart E., Dujardin G., Lacroute F. SLS1, a new Saccharomyces cerevisiae gene involved in mitochondrial metabolism, isolated as a syntheticlethal in association with an SSM4 deletion. Mol Gen Genet. 1996 Oct 28;252(6):700–708. doi: 10.1007/BF02173976. [DOI] [PubMed] [Google Scholar]
- Sanchirico M. E., Fox T. D., Mason T. L. Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J. 1998 Oct 1;17(19):5796–5804. doi: 10.1093/emboj/17.19.5796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shadel G. S., Clayton D. A. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem. 1997;66:409–435. doi: 10.1146/annurev.biochem.66.1.409. [DOI] [PubMed] [Google Scholar]
- Shadel G. S. Yeast as a model for human mtDNA replication. Am J Hum Genet. 1999 Nov;65(5):1230–1237. doi: 10.1086/302630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
- Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small I. D., Peeters N. The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci. 2000 Feb;25(2):46–47. doi: 10.1016/s0968-0004(99)01520-0. [DOI] [PubMed] [Google Scholar]
- Smeitink J., van den Heuvel L., DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet. 2001 May;2(5):342–352. doi: 10.1038/35072063. [DOI] [PubMed] [Google Scholar]
- Spithill T. W., Nagley P., Linnane A. W. Biogenesis of mitochondria 51: biochemical characterization of a mitochondrial mutation in Saccharomyces cerevisiae affecting the mitochondrial ribosome by conferring resistance to aminoglycoside antibiotics. Mol Gen Genet. 1979 Jun 7;173(2):159–170. doi: 10.1007/BF00330306. [DOI] [PubMed] [Google Scholar]
- Wallace D. C. Mitochondrial diseases in man and mouse. Science. 1999 Mar 5;283(5407):1482–1488. doi: 10.1126/science.283.5407.1482. [DOI] [PubMed] [Google Scholar]
- Wallis M. G., Groudinsky O., Slonimski P. P., Dujardin G. The NAM1 protein (NAM1p), which is selectively required for cox1, cytb and atp6 transcript processing/stabilisation, is located in the yeast mitochondrial matrix. Eur J Biochem. 1994 May 15;222(1):27–32. doi: 10.1111/j.1432-1033.1994.tb18837.x. [DOI] [PubMed] [Google Scholar]
- Wiesenberger G., Fox T. D. Pet127p, a membrane-associated protein involved in stability and processing of Saccharomyces cerevisiae mitochondrial RNAs. Mol Cell Biol. 1997 May;17(5):2816–2824. doi: 10.1128/mcb.17.5.2816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y., Bell A., Perlman P. S., Leibowitz M. J. Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae. RNA. 2000 Jul;6(7):937–951. doi: 10.1017/s1355838200991726. [DOI] [PMC free article] [PubMed] [Google Scholar]