Skip to main content
Genetics logoLink to Genetics
. 2002 Jan;160(1):357–366. doi: 10.1093/genetics/160.1.357

Assessing allelic dropout and genotype reliability using maximum likelihood.

Craig R Miller 1, Paul Joyce 1, Lisette P Waits 1
PMCID: PMC1461941  PMID: 11805071

Abstract

A growing number of population genetic studies utilize nuclear DNA microsatellite data from museum specimens and noninvasive sources. Genotyping errors are elevated in these low quantity DNA sources, potentially compromising the power and accuracy of the data. The most conservative method for addressing this problem is effective, but requires extensive replication of individual genotypes. In search of a more efficient method, we developed a maximum-likelihood approach that minimizes errors by estimating genotype reliability and strategically directing replication at loci most likely to harbor errors. The model assumes that false and contaminant alleles can be removed from the dataset and that the allelic dropout rate is even across loci. Simulations demonstrate that the proposed method marks a vast improvement in efficiency while maintaining accuracy. When allelic dropout rates are low (0-30%), the reduction in the number of PCR replicates is typically 40-50%. The model is robust to moderate violations of the even dropout rate assumption. For datasets that contain false and contaminant alleles, a replication strategy is proposed. Our current model addresses only allelic dropout, the most prevalent source of genotyping error. However, the developed likelihood framework can incorporate additional error-generating processes as they become more clearly understood.

Full Text

The Full Text of this article is available as a PDF (169.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ernest H. B., Penedo M. C., May B. P., Syvanen M., Boyce W. M. Molecular tracking of mountain lions in the Yosemite valley region in California: genetic analysis using microsatellites and faecal DNA. Mol Ecol. 2000 Apr;9(4):433–441. doi: 10.1046/j.1365-294x.2000.00890.x. [DOI] [PubMed] [Google Scholar]
  2. Gagneux P., Boesch C., Woodruff D. S. Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Mol Ecol. 1997 Sep;6(9):861–868. doi: 10.1111/j.1365-294x.1997.tb00140.x. [DOI] [PubMed] [Google Scholar]
  3. Goossens B., Waits L. P., Taberlet P. Plucked hair samples as a source of DNA: reliability of dinucleotide microsatellite genotyping. Mol Ecol. 1998 Sep;7(9):1237–1241. doi: 10.1046/j.1365-294x.1998.00407.x. [DOI] [PubMed] [Google Scholar]
  4. Leonard J. A., Wayne R. K., Cooper A. Population genetics of ice age brown bears. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1651–1654. doi: 10.1073/pnas.040453097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Miller L. M., Kapuscinski A. R. Historical analysis of genetic variation reveals low effective population size in a northern pike (Esox lucius) population. Genetics. 1997 Nov;147(3):1249–1258. doi: 10.1093/genetics/147.3.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Morin P. A., Wallis J., Moore J. J., Woodruff D. S. Paternity exclusion in a community of wild chimpanzees using hypervariable simple sequence repeats. Mol Ecol. 1994 Oct;3(5):469–477. doi: 10.1111/j.1365-294x.1994.tb00125.x. [DOI] [PubMed] [Google Scholar]
  7. Navidi W., Arnheim N., Waterman M. S. A multiple-tubes approach for accurate genotyping of very small DNA samples by using PCR: statistical considerations. Am J Hum Genet. 1992 Feb;50(2):347–359. [PMC free article] [PubMed] [Google Scholar]
  8. doi: 10.1098/rspb.1997.0121. [DOI] [PMC free article] [Google Scholar]
  9. Palsbøll P. J., Allen J., Bérubé M., Clapham P. J., Feddersen T. P., Hammond P. S., Hudson R. R., Jørgensen H., Katona S., Larsen A. H. Genetic tagging of humpback whales. Nature. 1997 Aug 21;388(6644):767–769. doi: 10.1038/42005. [DOI] [PubMed] [Google Scholar]
  10. Taberlet P, Waits LP, Luikart G. Noninvasive genetic sampling: look before you leap. Trends Ecol Evol. 1999 Aug;14(8):323–327. doi: 10.1016/s0169-5347(99)01637-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES