Abstract
Gypsy is an endogenous retrovirus of Drosophila melanogaster. Phylogenetic studies suggest that occasional horizontal transfer events of gypsy occur between Drosophila species. gypsy possesses infective properties associated with the products of the envelope gene that might be at the origin of these interspecies transfers. We report here the existence of DNA sequences putatively encoding full-length Env proteins in the genomes of Drosophila species other than D. melanogaster, suggesting that potentially infective gypsy copies able to spread between sexually isolated species can occur. The ability of gypsy to invade the genome of a new species is conditioned by its capacity to be expressed in the naive genome. The genetic basis for the regulation of gypsy activity in D. melanogaster is now well known, and it has been assigned to an X-linked gene called flamenco. We established an experimental simulation of the invasion of the D. melanogaster genome by gypsy elements derived from other Drosophila species, which demonstrates that these non- D. melanogaster gypsy elements escape the repression exerted by the D. melanogaster flamenco gene.
Full Text
The Full Text of this article is available as a PDF (451.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberola T. M., de Frutos R. Molecular structure of a gypsy element of Drosophila subobscura (gypsyDs) constituting a degenerate form of insect retroviruses. Nucleic Acids Res. 1996 Mar 1;24(5):914–923. doi: 10.1093/nar/24.5.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailey T. L., Elkan C. The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol. 1995;3:21–29. [PubMed] [Google Scholar]
- Blond J. L., Lavillette D., Cheynet V., Bouton O., Oriol G., Chapel-Fernandes S., Mandrand B., Mallet F., Cosset F. L. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol. 2000 Apr;74(7):3321–3329. doi: 10.1128/jvi.74.7.3321-3329.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bucheton A. The relationship between the flamenco gene and gypsy in Drosophila: how to tame a retrovirus. Trends Genet. 1995 Sep;11(9):349–353. doi: 10.1016/s0168-9525(00)89105-2. [DOI] [PubMed] [Google Scholar]
- Chalvet F., Teysset L., Terzian C., Prud'homme N., Santamaria P., Bucheton A., Pélisson A. Proviral amplification of the Gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline. EMBO J. 1999 May 4;18(9):2659–2669. doi: 10.1093/emboj/18.9.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark J. B., Maddison W. P., Kidwell M. G. Phylogenetic analysis supports horizontal transfer of P transposable elements. Mol Biol Evol. 1994 Jan;11(1):40–50. doi: 10.1093/oxfordjournals.molbev.a040091. [DOI] [PubMed] [Google Scholar]
- Den Dunnen J. T., Van Ommen G. J. The protein truncation test: A review. Hum Mutat. 1999;14(2):95–102. doi: 10.1002/(SICI)1098-1004(1999)14:2<95::AID-HUMU1>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Desset S., Conte C., Dimitri P., Calco V., Dastugue B., Vaury C. Mobilization of two retroelements, ZAM and Idefix, in a novel unstable line of Drosophila melanogaster. Mol Biol Evol. 1999 Jan;16(1):54–66. doi: 10.1093/oxfordjournals.molbev.a026038. [DOI] [PubMed] [Google Scholar]
- Jordan I. K., Matyunina L. V., McDonald J. F. Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12621–12625. doi: 10.1073/pnas.96.22.12621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazo A. M., Mizrokhi L. J., Karavanov A. A., Sedkov Y. A., Krichevskaja A. A., Ilyin Y. V. Suppression in Drosophila: su(Hw) and su(f) gene products interact with a region of gypsy (mdg4) regulating its transcriptional activity. EMBO J. 1989 Mar;8(3):903–911. doi: 10.1002/j.1460-2075.1989.tb03451.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgenstern B. DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics. 1999 Mar;15(3):211–218. doi: 10.1093/bioinformatics/15.3.211. [DOI] [PubMed] [Google Scholar]
- Parkhurst S. M., Harrison D. A., Remington M. P., Spana C., Kelley R. L., Coyne R. S., Corces V. G. The Drosophila su(Hw) gene, which controls the phenotypic effect of the gypsy transposable element, encodes a putative DNA-binding protein. Genes Dev. 1988 Oct;2(10):1205–1215. doi: 10.1101/gad.2.10.1205. [DOI] [PubMed] [Google Scholar]
- Pélisson A., Song S. U., Prud'homme N., Smith P. A., Bucheton A., Corces V. G. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J. 1994 Sep 15;13(18):4401–4411. doi: 10.1002/j.1460-2075.1994.tb06760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robert V., Prud'homme N., Kim A., Bucheton A., Pélisson A. Characterization of the flamenco region of the Drosophila melanogaster genome. Genetics. 2001 Jun;158(2):701–713. doi: 10.1093/genetics/158.2.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson H. M. Multiple Mariner transposons in flatworms and hydras are related to those of insects. J Hered. 1997 May-Jun;88(3):195–201. doi: 10.1093/oxfordjournals.jhered.a023088. [DOI] [PubMed] [Google Scholar]
- Song S. U., Gerasimova T., Kurkulos M., Boeke J. D., Corces V. G. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 1994 Sep 1;8(17):2046–2057. doi: 10.1101/gad.8.17.2046. [DOI] [PubMed] [Google Scholar]
- Syomin B. V., Fedorova L. I., Surkov S. A., Ilyin Y. V. The endogenous Drosophila melanogaster retrovirus gypsy can propagate in Drosophila hydei cells. Mol Gen Genet. 2001 Jan;264(5):588–594. doi: 10.1007/s004380000344. [DOI] [PubMed] [Google Scholar]
- Terzian C., Ferraz C., Demaille J., Bucheton A. Evolution of the Gypsy endogenous retrovirus in the Drosophila melanogaster subgroup. Mol Biol Evol. 2000 Jun;17(6):908–914. doi: 10.1093/oxfordjournals.molbev.a026371. [DOI] [PubMed] [Google Scholar]
- Teysset L., Burns J. C., Shike H., Sullivan B. L., Bucheton A., Terzian C. A Moloney murine leukemia virus-based retroviral vector pseudotyped by the insect retroviral gypsy envelope can infect Drosophila cells. J Virol. 1998 Jan;72(1):853–856. doi: 10.1128/jvi.72.1.853-856.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Reijden B. A., van Ommen G. J., Hagemeijer A., Breuning M. H. Acute myelogenous leukemia: a disorder of gene splicing? Leukemia. 1996 Feb;10(2):204–206. [PubMed] [Google Scholar]
