Abstract
Levels of neutral variation are influenced by background selection and hitchhiking. The relative contribution of these evolutionary forces to the distribution of neutral variation is still the subject of ongoing debates. Using 133 microsatellites, we determined levels of variability on X chromosomes and autosomes in African and non-African D. melanogaster populations. In the ancestral African populations microsatellite variability was higher on X chromosomes than on autosomes. In non-African populations X-linked polymorphism is significantly more reduced than autosomal variation. In non-African populations we observed a significant positive correlation between X chromosomal polymorphism and recombination rate. These results are consistent with the interpretation that background selection shapes levels of neutral variability in the ancestral populations, while the pattern in derived populations is determined by multiple selective sweeps during the colonization process. Further research, however, is required to investigate the influence of inversion polymorphisms and unequal sex ratios.
Full Text
The Full Text of this article is available as a PDF (108.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguade M., Miyashita N., Langley C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics. 1989 Jul;122(3):607–615. doi: 10.1093/genetics/122.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aguadé M. Different forces drive the evolution of the Acp26Aa and Acp26Ab accessory gland genes in the Drosophila melanogaster species complex. Genetics. 1998 Nov;150(3):1079–1089. doi: 10.1093/genetics/150.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andolfatto P. Contrasting patterns of X-linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol. 2001 Mar;18(3):279–290. doi: 10.1093/oxfordjournals.molbev.a003804. [DOI] [PubMed] [Google Scholar]
- Andolfatto P., Wall J. D., Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics. 1999 Nov;153(3):1297–1311. doi: 10.1093/genetics/153.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachtrog D., Agis M., Imhof M., Schlötterer C. Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster. Mol Biol Evol. 2000 Sep;17(9):1277–1285. doi: 10.1093/oxfordjournals.molbev.a026411. [DOI] [PubMed] [Google Scholar]
- Bauer V. L., Aquadro C. F. Rates of DNA sequence evolution are not sex-biased in Drosophila melanogaster and D. simulans. Mol Biol Evol. 1997 Dec;14(12):1252–1257. doi: 10.1093/oxfordjournals.molbev.a025734. [DOI] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. doi: 10.1038/365548a0. [DOI] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Evolution at the tip and base of the X chromosome in an African population of Drosophila melanogaster. Mol Biol Evol. 1995 May;12(3):382–390. doi: 10.1093/oxfordjournals.molbev.a040213. [DOI] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Molecular variation at the vermilion locus in geographically diverse populations of Drosophila melanogaster and D. simulans. Genetics. 1995 Jul;140(3):1019–1032. doi: 10.1093/genetics/140.3.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohossian H. B., Skaletsky H., Page D. C. Unexpectedly similar rates of nucleotide substitution found in male and female hominids. Nature. 2000 Aug 10;406(6796):622–625. doi: 10.1038/35020557. [DOI] [PubMed] [Google Scholar]
- Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinkmann B., Klintschar M., Neuhuber F., Hühne J., Rolf B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet. 1998 Jun;62(6):1408–1415. doi: 10.1086/301869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bénassi V., Depaulis F., Meghlaoui G. K., Veuille M. Partial sweeping of variation at the Fbp2 locus in a west African population of Drosophila melanogaster. Mol Biol Evol. 1999 Mar;16(3):347–353. doi: 10.1093/oxfordjournals.molbev.a026115. [DOI] [PubMed] [Google Scholar]
- Caballero A. Developments in the prediction of effective population size. Heredity (Edinb) 1994 Dec;73(Pt 6):657–679. doi: 10.1038/hdy.1994.174. [DOI] [PubMed] [Google Scholar]
- Capy P., Veuille M., Paillette M., Jallon J. M., Vouidibio J., David J. R. Sexual isolation of genetically differentiated sympatric populations of Drosophila melanogaster in Brazzaville, Congo: the first step towards speciation? Heredity (Edinb) 2000 Apr;84(Pt 4):468–475. doi: 10.1046/j.1365-2540.2000.00711.x. [DOI] [PubMed] [Google Scholar]
- Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B. The effect of life-history and mode of inheritance on neutral genetic variability. Genet Res. 2001 Apr;77(2):153–166. doi: 10.1017/s0016672301004979. [DOI] [PubMed] [Google Scholar]
- Comeron J. M., Kreitman M., Aguadé M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics. 1999 Jan;151(1):239–249. doi: 10.1093/genetics/151.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornuet J. M., Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996 Dec;144(4):2001–2014. doi: 10.1093/genetics/144.4.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- David J. R., Capy P. Genetic variation of Drosophila melanogaster natural populations. Trends Genet. 1988 Apr;4(4):106–111. doi: 10.1016/0168-9525(88)90098-4. [DOI] [PubMed] [Google Scholar]
- Depaulis F., Brazier L., Veuille M. Selective sweep at the Drosophila melanogaster Suppressor of Hairless locus and its association with the In(2L)t inversion polymorphism. Genetics. 1999 Jul;152(3):1017–1024. doi: 10.1093/genetics/152.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein D. B., Clark A. G. Microsatellite variation in North American populations of Drosophila melanogaster. Nucleic Acids Res. 1995 Oct 11;23(19):3882–3886. doi: 10.1093/nar/23.19.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. An evaluation of genetic distances for use with microsatellite loci. Genetics. 1995 Jan;139(1):463–471. doi: 10.1093/genetics/139.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harr B., Schlötterer C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics. 2000 Jul;155(3):1213–1220. doi: 10.1093/genetics/155.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasson E., Eanes W. F. Contrasting histories of three gene regions associated with In(3L)Payne of Drosophila melanogaster. Genetics. 1996 Dec;144(4):1565–1575. doi: 10.1093/genetics/144.4.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R. How can the low levels of DNA sequence variation in regions of the drosophila genome with low recombination rates be explained? Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6815–6818. doi: 10.1073/pnas.91.15.6815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imhof M., Schlotterer C. Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1113–1117. doi: 10.1073/pnas.98.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korol A., Rashkovetsky E., Iliadi K., Michalak P., Ronin Y., Nevo E. Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at "Evolution Canyon". Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12637–12642. doi: 10.1073/pnas.220041397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langley C. H., Voelker R. A., Brown A. J., Ohnishi S., Dickson B., Montgomery E. Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster. Genetics. 1981 Sep;99(1):151–156. doi: 10.1093/genetics/99.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lenski R. E., Travisano M. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6808–6814. doi: 10.1073/pnas.91.15.6808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martín-Campos J. M., Comerón J. M., Miyashita N., Aguadé M. Intraspecific and interspecific variation at the y-ac-sc region of Drosophila simulans and Drosophila melanogaster. Genetics. 1992 Apr;130(4):805–816. doi: 10.1093/genetics/130.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michalakis Y., Veuille M. Length variation of CAG/CAA trinucleotide repeats in natural populations of Drosophila melanogaster and its relation to the recombination rate. Genetics. 1996 Aug;143(4):1713–1725. doi: 10.1093/genetics/143.4.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachman M. W. Patterns of DNA variability at X-linked loci in Mus domesticus. Genetics. 1997 Nov;147(3):1303–1316. doi: 10.1093/genetics/147.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Navarro A., Barbadilla A., Ruiz A. Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila. Genetics. 2000 Jun;155(2):685–698. doi: 10.1093/genetics/155.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
- Orr H. A., Betancourt A. J. Haldane's sieve and adaptation from the standing genetic variation. Genetics. 2001 Feb;157(2):875–884. doi: 10.1093/genetics/157.2.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlötterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma. 2000 Sep;109(6):365–371. doi: 10.1007/s004120000089. [DOI] [PubMed] [Google Scholar]
- Schlötterer C., Ritter R., Harr B., Brem G. High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol Biol Evol. 1998 Oct;15(10):1269–1274. doi: 10.1093/oxfordjournals.molbev.a025855. [DOI] [PubMed] [Google Scholar]
- Schlötterer C., Vogl C., Tautz D. Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations. Genetics. 1997 May;146(1):309–320. doi: 10.1093/genetics/146.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schug M. D., Hutter C. M., Noor M. A., Aquadro C. F. Mutation and evolution of microsatellites in Drosophila melanogaster. Genetica. 1998;102-103(1-6):359–367. [PubMed] [Google Scholar]
- Schug M. D., Hutter C. M., Wetterstrand K. A., Gaudette M. S., Mackay T. F., Aquadro C. F. The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Mol Biol Evol. 1998 Dec;15(12):1751–1760. doi: 10.1093/oxfordjournals.molbev.a025901. [DOI] [PubMed] [Google Scholar]
- Stephan W., Langley C. H. DNA polymorphism in lycopersicon and crossing-over per physical length. Genetics. 1998 Dec;150(4):1585–1593. doi: 10.1093/genetics/150.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephan W., Langley C. H. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics. 1989 Jan;121(1):89–99. doi: 10.1093/genetics/121.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiehe T. H., Stephan W. Analysis of a genetic hitchhiking model, and its application to DNA polymorphism data from Drosophila melanogaster. Mol Biol Evol. 1993 Jul;10(4):842–854. doi: 10.1093/oxfordjournals.molbev.a040046. [DOI] [PubMed] [Google Scholar]
- Wu C. I., Hollocher H., Begun D. J., Aquadro C. F., Xu Y., Wu M. L. Sexual isolation in Drosophila melanogaster: a possible case of incipient speciation. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2519–2523. doi: 10.1073/pnas.92.7.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]