Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):741–751. doi: 10.1093/genetics/160.2.741

Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach.

Pierre Berthier 1, Mark A Beaumont 1, Jean-Marie Cornuet 1, Gordon Luikart 1
PMCID: PMC1461962  PMID: 11861575

Abstract

A new genetic estimator of the effective population size (N(e)) is introduced. This likelihood-based (LB) estimator uses two temporally spaced genetic samples of individuals from a population. We compared its performance to that of the classical F-statistic-based N(e) estimator (N(eFk)) by using data from simulated populations with known N(e) and real populations. The new likelihood-based estimator (N(eLB)) showed narrower credible intervals and greater accuracy than (N(eFk)) when genetic drift was strong, but performed only slightly better when genetic drift was relatively weak. When drift was strong (e.g., N(e) = 20 for five generations), as few as approximately 10 loci (heterozygosity of 0.6; samples of 30 individuals) are sufficient to consistently achieve credible intervals with an upper limit <50 using the LB method. In contrast, approximately 20 loci are required for the same precision when using the classical F-statistic approach. The N(eLB) estimator is much improved over the classical method when there are many rare alleles. It will be especially useful in conservation biology because it less often overestimates N(e) than does N(eLB) and thus is less likely to erroneously suggest that a population is large and has a low extinction risk.

Full Text

The Full Text of this article is available as a PDF (175.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. C., Williamson E. G., Thompson E. A. Monte Carlo evaluation of the likelihood for N(e) from temporally spaced samples. Genetics. 2000 Dec;156(4):2109–2118. doi: 10.1093/genetics/156.4.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caballero A. Developments in the prediction of effective population size. Heredity (Edinb) 1994 Dec;73(Pt 6):657–679. doi: 10.1038/hdy.1994.174. [DOI] [PubMed] [Google Scholar]
  3. Chikhi L., Bruford M. W., Beaumont M. A. Estimation of admixture proportions: a likelihood-based approach using Markov chain Monte Carlo. Genetics. 2001 Jul;158(3):1347–1362. doi: 10.1093/genetics/158.3.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cornuet J. M., Piry S., Luikart G., Estoup A., Solignac M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics. 1999 Dec;153(4):1989–2000. doi: 10.1093/genetics/153.4.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donnelly P., Tavaré S. Coalescents and genealogical structure under neutrality. Annu Rev Genet. 1995;29:401–421. doi: 10.1146/annurev.ge.29.120195.002153. [DOI] [PubMed] [Google Scholar]
  6. Funk W. C., Tallmon D. A., Allendorf F. W. Small effective population size in the long-toed salamander. Mol Ecol. 1999 Oct;8(10):1633–1640. doi: 10.1046/j.1365-294x.1999.00748.x. [DOI] [PubMed] [Google Scholar]
  7. Jorde P. E., Ryman N. Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics. 1996 Jul;143(3):1369–1381. doi: 10.1093/genetics/143.3.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kantanen J., Olsaker I., Adalsteinsson S., Sandberg K., Eythorsdottir E., Pirhonen K., Holm L. E. Temporal changes in genetic variation of north European cattle breeds. Anim Genet. 1999 Feb;30(1):16–27. doi: 10.1046/j.1365-2052.1999.00379.x. [DOI] [PubMed] [Google Scholar]
  9. Luikart G., Allendorf F. W., Cornuet J. M., Sherwin W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered. 1998 May-Jun;89(3):238–247. doi: 10.1093/jhered/89.3.238. [DOI] [PubMed] [Google Scholar]
  10. Luikart G., Cornuet J. M. Estimating the effective number of breeders from heterozygote excess in progeny. Genetics. 1999 Mar;151(3):1211–1216. doi: 10.1093/genetics/151.3.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Möhle M. Ancestral processes in population genetics-the coalescent. J Theor Biol. 2000 Jun 21;204(4):629–638. doi: 10.1006/jtbi.2000.2032. [DOI] [PubMed] [Google Scholar]
  12. Nei M., Tajima F. Genetic drift and estimation of effective population size. Genetics. 1981 Jul;98(3):625–640. doi: 10.1093/genetics/98.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. doi: 10.1098/rspb.1999.0918. [DOI] [PMC free article] [Google Scholar]
  14. Pollak E. A new method for estimating the effective population size from allele frequency changes. Genetics. 1983 Jul;104(3):531–548. doi: 10.1093/genetics/104.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saccheri I. J., Wilson I. J., Nichols R. A., Bruford M. W., Brakefield P. M. Inbreeding of bottlenecked butterfly populations. Estimation using the likelihood of changes in marker allele frequencies. Genetics. 1999 Mar;151(3):1053–1063. doi: 10.1093/genetics/151.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Slatkin M. Gene genealogies within mutant allelic classes. Genetics. 1996 May;143(1):579–587. doi: 10.1093/genetics/143.1.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spencer C. C., Neigel J. E., Leberg P. L. Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol. 2000 Oct;9(10):1517–1528. doi: 10.1046/j.1365-294x.2000.01031.x. [DOI] [PubMed] [Google Scholar]
  18. Tavaré S. Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol. 1984 Oct;26(2):119–164. doi: 10.1016/0040-5809(84)90027-3. [DOI] [PubMed] [Google Scholar]
  19. Taylor C. E., Toure Y. T., Coluzzi M., Petrarca V. Effective population size and persistence of Anopheles arabiensis during the dry season in west Africa. Med Vet Entomol. 1993 Oct;7(4):351–357. doi: 10.1111/j.1365-2915.1993.tb00704.x. [DOI] [PubMed] [Google Scholar]
  20. Waples R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics. 1989 Feb;121(2):379–391. doi: 10.1093/genetics/121.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williamson E. G., Slatkin M. Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics. 1999 Jun;152(2):755–761. doi: 10.1093/genetics/152.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES