Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):753–763. doi: 10.1093/genetics/160.2.753

A microsatellite-based multilocus screen for the identification of local selective sweeps.

Christian Schlötterer 1
PMCID: PMC1461965  PMID: 11861576

Abstract

With the availability of completely sequenced genomes, multilocus scans of natural variability have become a feasible approach for the identification of genomic regions subjected to natural and artificial selection. Here, I introduce a new multilocus test statistic, ln RV, which is based on the ratio of observed variances in repeat number at a set of microsatellite loci in two groups of populations. The distribution of ln RV values captures demographic history of the populations as well as variation in microsatellite mutation among loci. Given that microsatellite loci associated with a recent selective sweep differ from the remainder of the genome, they are expected to fall outside of the distribution of neutral ln RV values. The ln RV test statistic is applied to a data set of 94 loci typed in eight non-African and two African human populations.

Full Text

The Full Text of this article is available as a PDF (146.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andolfatto P., Wall J. D., Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics. 1999 Nov;153(3):1297–1311. doi: 10.1093/genetics/153.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaumont M. A. Detecting population expansion and decline using microsatellites. Genetics. 1999 Dec;153(4):2013–2029. doi: 10.1093/genetics/153.4.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowcock A. M., Kidd J. R., Mountain J. L., Hebert J. M., Carotenuto L., Kidd K. K., Cavalli-Sforza L. L. Drift, admixture, and selection in human evolution: a study with DNA polymorphisms. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):839–843. doi: 10.1073/pnas.88.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brinkmann B., Klintschar M., Neuhuber F., Hühne J., Rolf B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet. 1998 Jun;62(6):1408–1415. doi: 10.1086/301869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavalli-Sforza L. L. Population structure and human evolution. Proc R Soc Lond B Biol Sci. 1966 Mar 22;164(995):362–379. doi: 10.1098/rspb.1966.0038. [DOI] [PubMed] [Google Scholar]
  6. Chesser R. K., Rhodes O. E., Jr, Sugg D. W., Schnabel A. Effective sizes for subdivided populations. Genetics. 1993 Dec;135(4):1221–1232. doi: 10.1093/genetics/135.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Depaulis F., Veuille M. Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol. 1998 Dec;15(12):1788–1790. doi: 10.1093/oxfordjournals.molbev.a025905. [DOI] [PubMed] [Google Scholar]
  8. Di Rienzo A., Donnelly P., Toomajian C., Sisk B., Hill A., Petzl-Erler M. L., Haines G. K., Barch D. H. Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories. Genetics. 1998 Mar;148(3):1269–1284. doi: 10.1093/genetics/148.3.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garza J. C., Williamson E. G. Detection of reduction in population size using data from microsatellite loci. Mol Ecol. 2001 Feb;10(2):305–318. doi: 10.1046/j.1365-294x.2001.01190.x. [DOI] [PubMed] [Google Scholar]
  11. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. An evaluation of genetic distances for use with microsatellite loci. Genetics. 1995 Jan;139(1):463–471. doi: 10.1093/genetics/139.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldstein D. B., Zhivotovsky L. A., Nayar K., Linares A. R., Cavalli-Sforza L. L., Feldman M. W. Statistical properties of the variation at linked microsatellite loci: implications for the history of human Y chromosomes. Mol Biol Evol. 1996 Nov;13(9):1213–1218. doi: 10.1093/oxfordjournals.molbev.a025686. [DOI] [PubMed] [Google Scholar]
  13. Harr B., Schlötterer C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics. 2000 Jul;155(3):1213–1220. doi: 10.1093/genetics/155.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harr B., Zangerl B., Brem G., Schlötterer C. Conservation of locus-specific microsatellite variability across species: a comparison of two Drosophila sibling species, D. melanogaster and D. simulans. Mol Biol Evol. 1998 Feb;15(2):176–184. doi: 10.1093/oxfordjournals.molbev.a025913. [DOI] [PubMed] [Google Scholar]
  15. Jorde L. B., Bamshad M., Rogers A. R. Using mitochondrial and nuclear DNA markers to reconstruct human evolution. Bioessays. 1998 Feb;20(2):126–136. doi: 10.1002/(SICI)1521-1878(199802)20:2<126::AID-BIES5>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  16. Kohn M. H., Pelz H. J., Wayne R. K. Natural selection mapping of the warfarin-resistance gene. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7911–7915. doi: 10.1073/pnas.97.14.7911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  18. Lewontin R. C., Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973 May;74(1):175–195. doi: 10.1093/genetics/74.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moshous D., Li L., Chasseval R., Philippe N., Jabado N., Cowan M. J., Fischer A., de Villartay J. P. A new gene involved in DNA double-strand break repair and V(D)J recombination is located on human chromosome 10p. Hum Mol Genet. 2000 Mar 1;9(4):583–588. doi: 10.1093/hmg/9.4.583. [DOI] [PubMed] [Google Scholar]
  20. Murphy K. E., Stringer J. R. RecA independent recombination of poly[d(GT)-d(CA)] in pBR322. Nucleic Acids Res. 1986 Sep 25;14(18):7325–7340. doi: 10.1093/nar/14.18.7325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  22. Otto S. P. Detecting the form of selection from DNA sequence data. Trends Genet. 2000 Dec;16(12):526–529. doi: 10.1016/s0168-9525(00)02141-7. [DOI] [PubMed] [Google Scholar]
  23. Robertson A. Letters to the editors: Remarks on the Lewontin-Krakauer test. Genetics. 1975 Jun;80(2):396–396. doi: 10.1093/genetics/80.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schlötterer C., Ritter R., Harr B., Brem G. High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol Biol Evol. 1998 Oct;15(10):1269–1274. doi: 10.1093/oxfordjournals.molbev.a025855. [DOI] [PubMed] [Google Scholar]
  25. Schlötterer C., Vogl C., Tautz D. Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations. Genetics. 1997 May;146(1):309–320. doi: 10.1093/genetics/146.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Slatkin M. Hitchhiking and associative overdominance at a microsatellite locus. Mol Biol Evol. 1995 May;12(3):473–480. doi: 10.1093/oxfordjournals.molbev.a040222. [DOI] [PubMed] [Google Scholar]
  28. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  29. Tsakas S., Krimbas C. B. Testing the heterogeneity of F values: a suggestion and a correction. Genetics. 1976 Oct;84(2):399–401. doi: 10.1093/genetics/84.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  31. Vieira J., Charlesworth B. Evidence for selection at the fused locus of Drosophila virilis. Genetics. 2000 Aug;155(4):1701–1709. doi: 10.1093/genetics/155.4.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vitalis R., Dawson K., Boursot P. Interpretation of variation across marker loci as evidence of selection. Genetics. 2001 Aug;158(4):1811–1823. doi: 10.1093/genetics/158.4.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wiehe T. The effect of selective sweeps on the variance of the allele distribution of a linked multiallele locus: hitchhiking of microsatellites. Theor Popul Biol. 1998 Jun;53(3):272–283. doi: 10.1006/tpbi.1997.1346. [DOI] [PubMed] [Google Scholar]
  34. Wierdl M., Dominska M., Petes T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics. 1997 Jul;146(3):769–779. doi: 10.1093/genetics/146.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES