Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):547–560. doi: 10.1093/genetics/160.2.547

The Drosophila gene taranis encodes a novel trithorax group member potentially linked to the cell cycle regulatory apparatus.

Stéphane Calgaro 1, Muriel Boube 1, David L Cribbs 1, Henri-Marc Bourbon 1
PMCID: PMC1461966  PMID: 11861561

Abstract

Genes of the Drosophila Polycomb and trithorax groups (PcG and trxG, respectively) influence gene expression by modulating chromatin structure. Segmental expression of homeotic loci (HOM) initiated in early embryogenesis is maintained by a balance of antagonistic PcG (repressor) and trxG (activator) activities. Here we identify a novel trxG family member, taranis (tara), on the basis of the following criteria: (i) tara loss-of-function mutations act as genetic antagonists of the PcG genes Polycomb and polyhomeotic and (ii) they enhance the phenotypic effects of mutations in the trxG genes trithorax (trx), brahma (brm), and osa. In addition, reduced tara activity can mimic homeotic loss-of-function phenotypes, as is often the case for trxG genes. tara encodes two closely related 96-kD protein isoforms (TARA-alpha/-beta) derived from broadly expressed alternative promoters. Genetic and phenotypic rescue experiments indicate that the TARA-alpha/-beta proteins are functionally redundant. The TARA proteins share evolutionarily conserved motifs with several recently characterized mammalian nuclear proteins, including the cyclin-dependent kinase regulator TRIP-Br1/p34(SEI-1), the related protein TRIP-Br2/Y127, and RBT1, a partner of replication protein A. These data raise the possibility that TARA-alpha/-beta play a role in integrating chromatin structure with cell cycle regulation.

Full Text

The Full Text of this article is available as a PDF (492.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aasland R., Gibson T. J., Stewart A. F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci. 1995 Feb;20(2):56–59. doi: 10.1016/s0968-0004(00)88957-4. [DOI] [PubMed] [Google Scholar]
  2. Abdelilah-Seyfried S., Chan Y. M., Zeng C., Justice N. J., Younger-Shepherd S., Sharp L. E., Barbel S., Meadows S. A., Jan L. Y., Jan Y. N. A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ. Genetics. 2000 Jun;155(2):733–752. doi: 10.1093/genetics/155.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abdullah J. M., Jing X., Spassov D. S., Nachtman R. G., Jurecic R. Cloning and characterization of Hepp, a novel gene expressed preferentially in hematopoietic progenitors and mature blood cells. Blood Cells Mol Dis. 2001 May-Jun;27(3):667–676. doi: 10.1006/bcmd.2001.0434. [DOI] [PubMed] [Google Scholar]
  4. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  5. Adams P. D., Sellers W. R., Sharma S. K., Wu A. D., Nalin C. M., Kaelin W. G., Jr Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol Cell Biol. 1996 Dec;16(12):6623–6633. doi: 10.1128/mcb.16.12.6623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Akam M. The molecular basis for metameric pattern in the Drosophila embryo. Development. 1987 Sep;101(1):1–22. [PubMed] [Google Scholar]
  7. Benassayag C., Boube M., Seroude L., Cribbs D. L. Point mutations within and outside the homeodomain identify sequences required for proboscipedia homeotic function in Drosophila. Genetics. 1997 Jul;146(3):939–949. doi: 10.1093/genetics/146.3.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  9. Botas J., Moscoso del Prado J., García-Bellido A. Gene-dose titration analysis in the search of trans-regulatory genes in Drosophila. EMBO J. 1982;1(3):307–310. doi: 10.1002/j.1460-2075.1982.tb01165.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Boube M., Benassayag C., Seroude L., Cribbs D. L. Ras1-mediated modulation of Drosophila homeotic function in cell and segment identity. Genetics. 1997 Jun;146(2):619–628. doi: 10.1093/genetics/146.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Boube M., Seroude L., Cribbs D. L. Homeotic proboscipedia cell identity functions respond to cell signaling pathways along the proximo-distal axis. Int J Dev Biol. 1998;42(3):431–436. [PubMed] [Google Scholar]
  12. Brown N. H., Kafatos F. C. Functional cDNA libraries from Drosophila embryos. J Mol Biol. 1988 Sep 20;203(2):425–437. doi: 10.1016/0022-2836(88)90010-1. [DOI] [PubMed] [Google Scholar]
  13. Cavalli G., Paro R. Epigenetic inheritance of active chromatin after removal of the main transactivator. Science. 1999 Oct 29;286(5441):955–958. doi: 10.1126/science.286.5441.955. [DOI] [PubMed] [Google Scholar]
  14. Cho J. M., Song D. J., Bergeron J., Benlimame N., Wold M. S., Alaoui-Jamali M. A. RBT1, a novel transcriptional co-activator, binds the second subunit of replication protein A. Nucleic Acids Res. 2000 Sep 15;28(18):3478–3485. doi: 10.1093/nar/28.18.3478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Collins R. T., Furukawa T., Tanese N., Treisman J. E. Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. EMBO J. 1999 Dec 15;18(24):7029–7040. doi: 10.1093/emboj/18.24.7029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cribbs D. L., Benassayag C., Randazzo F. M., Kaufman T. C. Levels of homeotic protein function can determine developmental identity: evidence from low-level expression of the Drosophila homeotic gene proboscipedia under Hsp70 control. EMBO J. 1995 Feb 15;14(4):767–778. doi: 10.1002/j.1460-2075.1995.tb07055.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cribbs D. L., Pultz M. A., Johnson D., Mazzulla M., Kaufman T. C. Structural complexity and evolutionary conservation of the Drosophila homeotic gene proboscipedia. EMBO J. 1992 Apr;11(4):1437–1449. doi: 10.1002/j.1460-2075.1992.tb05188.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Crosby M. A., Miller C., Alon T., Watson K. L., Verrijzer C. P., Goldman-Levi R., Zak N. B. The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Mol Cell Biol. 1999 Feb;19(2):1159–1170. doi: 10.1128/mcb.19.2.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Daubresse G., Deuring R., Moore L., Papoulas O., Zakrajsek I., Waldrip W. R., Scott M. P., Kennison J. A., Tamkun J. W. The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. Development. 1999 Mar;126(6):1175–1187. doi: 10.1242/dev.126.6.1175. [DOI] [PubMed] [Google Scholar]
  20. Duncan I. M. Polycomblike: a gene that appears to be required for the normal expression of the bithorax and antennapedia gene complexes of Drosophila melanogaster. Genetics. 1982 Sep;102(1):49–70. doi: 10.1093/genetics/102.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Duncan I. Control of bithorax complex functions by the segmentation gene fushi tarazu of D. melanogaster. Cell. 1986 Oct 24;47(2):297–309. doi: 10.1016/0092-8674(86)90452-6. [DOI] [PubMed] [Google Scholar]
  22. Dura J. M., Brock H. W., Santamaria P. Polyhomeotic: a gene of Drosophila melanogaster required for correct expression of segmental identity. Mol Gen Genet. 1985;198(2):213–220. doi: 10.1007/BF00382998. [DOI] [PubMed] [Google Scholar]
  23. Dura J. M., Ingham P. Tissue- and stage-specific control of homeotic and segmentation gene expression in Drosophila embryos by the polyhomeotic gene. Development. 1988 Aug;103(4):733–741. doi: 10.1242/dev.103.4.733. [DOI] [PubMed] [Google Scholar]
  24. Duronio R. J., Bonnette P. C., O'Farrell P. H. Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F-DP transcription factor and cyclin E during the G1-S transition. Mol Cell Biol. 1998 Jan;18(1):141–151. doi: 10.1128/mcb.18.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Dynlacht B. D. Regulation of transcription by proteins that control the cell cycle. Nature. 1997 Sep 11;389(6647):149–152. doi: 10.1038/38225. [DOI] [PubMed] [Google Scholar]
  26. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998 Aug 1;12(15):2245–2262. doi: 10.1101/gad.12.15.2245. [DOI] [PubMed] [Google Scholar]
  27. Fauvarque M. O., Laurenti P., Boivin A., Bloyer S., Griffin-Shea R., Bourbon H. M., Dura J. M. Dominant modifiers of the polyhomeotic extra-sex-combs phenotype induced by marked P element insertional mutagenesis in Drosophila. Genet Res. 2001 Oct;78(2):137–148. doi: 10.1017/s0016672301005274. [DOI] [PubMed] [Google Scholar]
  28. Fernandez-Funez P., Nino-Rosales M. L., de Gouyon B., She W. C., Luchak J. M., Martinez P., Turiegano E., Benito J., Capovilla M., Skinner P. J. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature. 2000 Nov 2;408(6808):101–106. doi: 10.1038/35040584. [DOI] [PubMed] [Google Scholar]
  29. Francis N. J., Kingston R. E. Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol. 2001 Jun;2(6):409–421. doi: 10.1038/35073039. [DOI] [PubMed] [Google Scholar]
  30. Gildea J. J., Lopez R., Shearn A. A screen for new trithorax group genes identified little imaginal discs, the Drosophila melanogaster homologue of human retinoblastoma binding protein 2. Genetics. 2000 Oct;156(2):645–663. doi: 10.1093/genetics/156.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Harbour J. W., Dean D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 2000 Oct 1;14(19):2393–2409. doi: 10.1101/gad.813200. [DOI] [PubMed] [Google Scholar]
  32. Harding K., Levine M. Gap genes define the limits of antennapedia and bithorax gene expression during early development in Drosophila. EMBO J. 1988 Jan;7(1):205–214. doi: 10.1002/j.1460-2075.1988.tb02801.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hirzmann J., Luo D., Hahnen J., Hobom G. Determination of messenger RNA 5'-ends by reverse transcription of the cap structure. Nucleic Acids Res. 1993 Jul 25;21(15):3597–3598. doi: 10.1093/nar/21.15.3597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hsu S. I., Yang C. M., Sim K. G., Hentschel D. M., O'Leary E., Bonventre J. V. TRIP-Br: a novel family of PHD zinc finger- and bromodomain-interacting proteins that regulate the transcriptional activity of E2F-1/DP-1. EMBO J. 2001 May 1;20(9):2273–2285. doi: 10.1093/emboj/20.9.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Irish V. F., Martinez-Arias A., Akam M. Spatial regulation of the Antennapedia and Ultrabithorax homeotic genes during Drosophila early development. EMBO J. 1989 May;8(5):1527–1537. doi: 10.1002/j.1460-2075.1989.tb03537.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kal A. J., Mahmoudi T., Zak N. B., Verrijzer C. P. The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste. Genes Dev. 2000 May 1;14(9):1058–1071. [PMC free article] [PubMed] [Google Scholar]
  37. Kennison J. A., Tamkun J. W. Trans-regulation of homeotic genes in Drosophila. New Biol. 1992 Feb;4(2):91–96. [PubMed] [Google Scholar]
  38. Kennison J. A. The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet. 1995;29:289–303. doi: 10.1146/annurev.ge.29.120195.001445. [DOI] [PubMed] [Google Scholar]
  39. Kingston R. E., Narlikar G. J. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 1999 Sep 15;13(18):2339–2352. doi: 10.1101/gad.13.18.2339. [DOI] [PubMed] [Google Scholar]
  40. Krek W., Ewen M. E., Shirodkar S., Arany Z., Kaelin W. G., Jr, Livingston D. M. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell. 1994 Jul 15;78(1):161–172. doi: 10.1016/0092-8674(94)90582-7. [DOI] [PubMed] [Google Scholar]
  41. Lyko F., Paro R. Chromosomal elements conferring epigenetic inheritance. Bioessays. 1999 Oct;21(10):824–832. doi: 10.1002/(SICI)1521-1878(199910)21:10<824::AID-BIES4>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  42. Maniatis T., Hardison R. C., Lacy E., Lauer J., O'Connell C., Quon D., Sim G. K., Efstratiadis A. The isolation of structural genes from libraries of eucaryotic DNA. Cell. 1978 Oct;15(2):687–701. doi: 10.1016/0092-8674(78)90036-3. [DOI] [PubMed] [Google Scholar]
  43. Martínez-Balbás M. A., Dey A., Rabindran S. K., Ozato K., Wu C. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell. 1995 Oct 6;83(1):29–38. doi: 10.1016/0092-8674(95)90231-7. [DOI] [PubMed] [Google Scholar]
  44. McGinnis W., Krumlauf R. Homeobox genes and axial patterning. Cell. 1992 Jan 24;68(2):283–302. doi: 10.1016/0092-8674(92)90471-n. [DOI] [PubMed] [Google Scholar]
  45. O'Brien T., Wilkins R. C., Giardina C., Lis J. T. Distribution of GAGA protein on Drosophila genes in vivo. Genes Dev. 1995 May 1;9(9):1098–1110. doi: 10.1101/gad.9.9.1098. [DOI] [PubMed] [Google Scholar]
  46. Papoulas O., Beek S. J., Moseley S. L., McCallum C. M., Sarte M., Shearn A., Tamkun J. W. The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Development. 1998 Oct;125(20):3955–3966. doi: 10.1242/dev.125.20.3955. [DOI] [PubMed] [Google Scholar]
  47. Pirrotta V. Chromatin-silencing mechanisms in Drosophila maintain patterns of gene expression. Trends Genet. 1997 Aug;13(8):314–318. doi: 10.1016/s0168-9525(97)01178-5. [DOI] [PubMed] [Google Scholar]
  48. Pirrotta V. Polycombing the genome: PcG, trxG, and chromatin silencing. Cell. 1998 May 1;93(3):333–336. doi: 10.1016/s0092-8674(00)81162-9. [DOI] [PubMed] [Google Scholar]
  49. Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
  50. Pultz M. A., Diederich R. J., Cribbs D. L., Kaufman T. C. The proboscipedia locus of the Antennapedia complex: a molecular and genetic analysis. Genes Dev. 1988 Jul;2(7):901–920. doi: 10.1101/gad.2.7.901. [DOI] [PubMed] [Google Scholar]
  51. Raff J. W., Kellum R., Alberts B. The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle. EMBO J. 1994 Dec 15;13(24):5977–5983. doi: 10.1002/j.1460-2075.1994.tb06943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rozovskaia T., Tillib S., Smith S., Sedkov Y., Rozenblatt-Rosen O., Petruk S., Yano T., Nakamura T., Ben-Simchon L., Gildea J. Trithorax and ASH1 interact directly and associate with the trithorax group-responsive bxd region of the Ultrabithorax promoter. Mol Cell Biol. 1999 Sep;19(9):6441–6447. doi: 10.1128/mcb.19.9.6441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  55. Rørth P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12418–12422. doi: 10.1073/pnas.93.22.12418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sauer K., Weigmann K., Sigrist S., Lehner C. F. Novel members of the cdc2-related kinase family in Drosophila: cdk4/6, cdk5, PFTAIRE, and PITSLRE kinase. Mol Biol Cell. 1996 Nov;7(11):1759–1769. doi: 10.1091/mbc.7.11.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Shanahan F., Seghezzi W., Parry D., Mahony D., Lees E. Cyclin E associates with BAF155 and BRG1, components of the mammalian SWI-SNF complex, and alters the ability of BRG1 to induce growth arrest. Mol Cell Biol. 1999 Feb;19(2):1460–1469. doi: 10.1128/mcb.19.2.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Shao Z., Raible F., Mollaaghababa R., Guyon J. R., Wu C. T., Bender W., Kingston R. E. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell. 1999 Jul 9;98(1):37–46. doi: 10.1016/S0092-8674(00)80604-2. [DOI] [PubMed] [Google Scholar]
  59. Shearn A. The ash-1, ash-2 and trithorax genes of Drosophila melanogaster are functionally related. Genetics. 1989 Mar;121(3):517–525. doi: 10.1093/genetics/121.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sif S., Stukenberg P. T., Kirschner M. W., Kingston R. E. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev. 1998 Sep 15;12(18):2842–2851. doi: 10.1101/gad.12.18.2842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Staehling-Hampton K., Ciampa P. J., Brook A., Dyson N. A genetic screen for modifiers of E2F in Drosophila melanogaster. Genetics. 1999 Sep;153(1):275–287. doi: 10.1093/genetics/153.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Tamkun J. W., Deuring R., Scott M. P., Kissinger M., Pattatucci A. M., Kaufman T. C., Kennison J. A. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 1992 Feb 7;68(3):561–572. doi: 10.1016/0092-8674(92)90191-e. [DOI] [PubMed] [Google Scholar]
  63. Thompson J. D., Plewniak F., Thierry J., Poch O. DbClustal: rapid and reliable global multiple alignments of protein sequences detected by database searches. Nucleic Acids Res. 2000 Aug 1;28(15):2919–2926. doi: 10.1093/nar/28.15.2919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Vázquez M., Moore L., Kennison J. A. The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the brahma chromatin-remodeling factor to regulate transcription. Development. 1999 Feb;126(4):733–742. doi: 10.1242/dev.126.4.733. [DOI] [PubMed] [Google Scholar]
  65. Wedeen C., Harding K., Levine M. Spatial regulation of Antennapedia and bithorax gene expression by the Polycomb locus in Drosophila. Cell. 1986 Mar 14;44(5):739–748. doi: 10.1016/0092-8674(86)90840-8. [DOI] [PubMed] [Google Scholar]
  66. Wilson C., Pearson R. K., Bellen H. J., O'Kane C. J., Grossniklaus U., Gehring W. J. P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev. 1989 Sep;3(9):1301–1313. doi: 10.1101/gad.3.9.1301. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES