Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):527–535. doi: 10.1093/genetics/160.2.527

Unexpected stability of mariner transgenes in Drosophila.

Elena R Lozovsky 1, Dmitry Nurminsky 1, Ernst A Wimmer 1, Daniel L Hartl 1
PMCID: PMC1461967  PMID: 11861559

Abstract

A number of mariner transformation vectors based on the mauritiana subfamily of transposable elements were introduced into the genome of Drosophila melanogaster and examined for their ability to be mobilized by the mariner transposase. Simple insertion vectors were constructed from single mariner elements into which exogenous DNA ranging in size from 1.3 to 4.5 kb had been inserted; composite vectors were constructed with partial or complete duplications of mariner flanking the exogenous DNA. All of the simple insertion vectors showed levels of somatic and germline excision that were at least 100-fold lower than the baseline level of uninterrupted mariner elements. Although composite vectors with inverted duplications were unable to be mobilized at detectable frequencies, vectors with large direct duplications of mariner could be mobilized. A vector consisting of two virtually complete elements flanking exogenous DNA yielded a frequency of somatic eye-color mosaicism of approximately 10% and a frequency of germline excision of 0.04%. These values are far smaller than those observed for uninterrupted elements. The results imply that efficient mobilization of mariner in vivo requires the presence and proper spacing of sequences internal to the element as well as the inverted repeats.

Full Text

The Full Text of this article is available as a PDF (116.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson P. W., Pinkerton A. C., O'Brochta D. A. Genetic transformation systems in insects. Annu Rev Entomol. 2001;46:317–346. doi: 10.1146/annurev.ento.46.1.317. [DOI] [PubMed] [Google Scholar]
  2. Auge-Gouillou C., Bigot Y., Pollet N., Hamelin M. H., Meunier-Rotival M., Periquet G. Human and other mammalian genomes contain transposons of the mariner family. FEBS Lett. 1995 Jul 24;368(3):541–546. doi: 10.1016/0014-5793(95)00735-r. [DOI] [PubMed] [Google Scholar]
  3. Berghammer A. J., Klingler M., Wimmer E. A. A universal marker for transgenic insects. Nature. 1999 Nov 25;402(6760):370–371. doi: 10.1038/46463. [DOI] [PubMed] [Google Scholar]
  4. Blackman R. K., Koehler M. M., Grimaila R., Gelbart W. M. Identification of a fully-functional hobo transposable element and its use for germ-line transformation of Drosophila. EMBO J. 1989 Jan;8(1):211–217. doi: 10.1002/j.1460-2075.1989.tb03366.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bryan G., Garza D., Hartl D. Insertion and excision of the transposable element mariner in Drosophila. Genetics. 1990 May;125(1):103–114. doi: 10.1093/genetics/125.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Capy P., Maruyama K., David J. R., Hartl D. L. Insertion sites of the transposable element mariner are fixed in the genome of Drosophila sechellia. J Mol Evol. 1991 Nov;33(5):450–456. doi: 10.1007/BF02103137. [DOI] [PubMed] [Google Scholar]
  7. Chiang S. L., Mekalanos J. J. Construction of a Vibrio cholerae vaccine candidate using transposon delivery and FLP recombinase-mediated excision. Infect Immun. 2000 Nov;68(11):6391–6397. doi: 10.1128/iai.68.11.6391-6397.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coates C. J., Jasinskiene N., Miyashiro L., James A. A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3748–3751. doi: 10.1073/pnas.95.7.3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fadool J. M., Hartl D. L., Dowling J. E. Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5182–5186. doi: 10.1073/pnas.95.9.5182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garcia-Fernàndez J., Bayascas-Ramírez J. R., Marfany G., Muñoz-Mármol A. M., Casali A., Baguñ J., Saló E. High copy number of highly similar mariner-like transposons in planarian (Platyhelminthe): evidence for a trans-phyla horizontal transfer. Mol Biol Evol. 1995 May;12(3):421–431. doi: 10.1093/oxfordjournals.molbev.a040217. [DOI] [PubMed] [Google Scholar]
  11. Garcia-Fernàndez J., Marfany G., Baguñ J., Saló E. Infiltration of mariner elements. Nature. 1993 Jul 8;364(6433):109–110. doi: 10.1038/364109a0. [DOI] [PubMed] [Google Scholar]
  12. Garza D., Medhora M., Koga A., Hartl D. L. Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics. 1991 Jun;128(2):303–310. doi: 10.1093/genetics/128.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gueiros-Filho F. J., Beverley S. M. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science. 1997 Jun 13;276(5319):1716–1719. doi: 10.1126/science.276.5319.1716. [DOI] [PubMed] [Google Scholar]
  14. Guo B. P., Mekalanos J. J. Helicobacter pylori mutagenesis by mariner in vitro transposition. FEMS Immunol Med Microbiol. 2001 Mar;30(2):87–93. doi: 10.1111/j.1574-695X.2001.tb01554.x. [DOI] [PubMed] [Google Scholar]
  15. Handler A. M. A current perspective on insect gene transformation. Insect Biochem Mol Biol. 2001 Feb;31(2):111–128. doi: 10.1016/s0965-1748(00)00159-4. [DOI] [PubMed] [Google Scholar]
  16. Handler A. M., McCombs S. D., Fraser M. J., Saul S. H. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7520–7525. doi: 10.1073/pnas.95.13.7520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartl D. L., Lohe A. R., Lozovskaya E. R. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet. 1997;31:337–358. doi: 10.1146/annurev.genet.31.1.337. [DOI] [PubMed] [Google Scholar]
  18. Horn C., Jaunich B., Wimmer E. A. Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. Dev Genes Evol. 2000 Dec;210(12):623–629. doi: 10.1007/s004270000111. [DOI] [PubMed] [Google Scholar]
  19. Horn C., Wimmer E. A. A versatile vector set for animal transgenesis. Dev Genes Evol. 2000 Dec;210(12):630–637. doi: 10.1007/s004270000110. [DOI] [PubMed] [Google Scholar]
  20. Ivics Z., Hackett P. B., Plasterk R. H., Izsvák Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997 Nov 14;91(4):501–510. doi: 10.1016/s0092-8674(00)80436-5. [DOI] [PubMed] [Google Scholar]
  21. Jacobson J. W., Medhora M. M., Hartl D. L. Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8684–8688. doi: 10.1073/pnas.83.22.8684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jarvik T., Lark K. G. Characterization of Soymar1, a mariner element in soybean. Genetics. 1998 Jul;149(3):1569–1574. doi: 10.1093/genetics/149.3.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lidholm D. A., Gudmundsson G. H., Boman H. G. A highly repetitive, mariner-like element in the genome of Hyalophora cecropia. J Biol Chem. 1991 Jun 25;266(18):11518–11521. [PubMed] [Google Scholar]
  24. Lidholm D. A., Lohe A. R., Hartl D. L. The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics. 1993 Jul;134(3):859–868. doi: 10.1093/genetics/134.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lobo N., Li X., Fraser M. J., Jr Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol Gen Genet. 1999 Jun;261(4-5):803–810. doi: 10.1007/s004380050024. [DOI] [PubMed] [Google Scholar]
  26. Lohe A. R., De Aguiar D., Hartl D. L. Mutations in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1293–1297. doi: 10.1073/pnas.94.4.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lohe A. R., Hartl D. L. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol Biol Evol. 1996 Apr;13(4):549–555. doi: 10.1093/oxfordjournals.molbev.a025615. [DOI] [PubMed] [Google Scholar]
  28. Lohe A. R., Hartl D. L. Germline transformation of Drosophila virilis with the transposable element mariner. Genetics. 1996 May;143(1):365–374. doi: 10.1093/genetics/143.1.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lohe A. R., Hartl D. L. Reduced germline mobility of a mariner vector containing exogenous DNA: effect of size or site? Genetics. 1996 Jul;143(3):1299–1306. doi: 10.1093/genetics/143.3.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lohe A. R., Timmons C., Beerman I., Lozovskaya E. R., Hartl D. L. Self-inflicted wounds, template-directed gap repair and a recombination hotspot. Effects of the mariner transposase. Genetics. 2000 Feb;154(2):647–656. doi: 10.1093/genetics/154.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Loukeris T. G., Livadaras I., Arcà B., Zabalou S., Savakis C. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science. 1995 Dec 22;270(5244):2002–2005. doi: 10.1126/science.270.5244.2002. [DOI] [PubMed] [Google Scholar]
  32. Lozovskaya E. R., Nurminsky D. I., Hartl D. L., Sullivan D. T. Germline transformation of Drosophila virilis mediated by the transposable element hobo. Genetics. 1996 Jan;142(1):173–177. doi: 10.1093/genetics/142.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Maruyama K., Hartl D. L. Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J Mol Evol. 1991 Dec;33(6):514–524. doi: 10.1007/BF02102804. [DOI] [PubMed] [Google Scholar]
  34. Maruyama K., Schoor K. D., Hartl D. L. Identification of nucleotide substitutions necessary for trans-activation of mariner transposable elements in Drosophila: analysis of naturally occurring elements. Genetics. 1991 Aug;128(4):777–784. doi: 10.1093/genetics/128.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Medhora M. M., MacPeek A. H., Hartl D. L. Excision of the Drosophila transposable element mariner: identification and characterization of the Mos factor. EMBO J. 1988 Jul;7(7):2185–2189. doi: 10.1002/j.1460-2075.1988.tb03057.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Medhora M., Maruyama K., Hartl D. L. Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics. 1991 Jun;128(2):311–318. doi: 10.1093/genetics/128.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Moreira L. A., Edwards M. J., Adhami F., Jasinskiene N., James A. A., Jacobs-Lorena M. Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10895–10898. doi: 10.1073/pnas.97.20.10895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nurminsky D. I., Nurminskaya M. V., Benevolenskaya E. V., Shevelyov Y. Y., Hartl D. L., Gvozdev V. A. Cytoplasmic dynein intermediate-chain isoforms with different targeting properties created by tissue-specific alternative splicing. Mol Cell Biol. 1998 Nov;18(11):6816–6825. doi: 10.1128/mcb.18.11.6816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. O'Brochta D. A., Warren W. D., Saville K. J., Atkinson P. W. Hermes, a functional non-Drosophilid insect gene vector from Musca domestica. Genetics. 1996 Mar;142(3):907–914. doi: 10.1093/genetics/142.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Oosumi T., Belknap W. R., Garlick B. Mariner transposons in humans. Nature. 1995 Dec 14;378(6558):672–672. doi: 10.1038/378672a0. [DOI] [PubMed] [Google Scholar]
  41. Patton J. S., Gomes X. V., Geyer P. K. Position-independent germline transformation in Drosophila using a cuticle pigmentation gene as a selectable marker. Nucleic Acids Res. 1992 Nov 11;20(21):5859–5860. doi: 10.1093/nar/20.21.5859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pelicic V., Morelle S., Lampe D., Nassif X. Mutagenesis of Neisseria meningitidis by in vitro transposition of Himar1 mariner. J Bacteriol. 2000 Oct;182(19):5391–5398. doi: 10.1128/jb.182.19.5391-5398.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Plasterk R. H., Izsvák Z., Ivics Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 1999 Aug;15(8):326–332. doi: 10.1016/s0168-9525(99)01777-1. [DOI] [PubMed] [Google Scholar]
  44. Robertson H. M., MacLeod E. G. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol. 1993;2(3):125–139. doi: 10.1111/j.1365-2583.1993.tb00132.x. [DOI] [PubMed] [Google Scholar]
  45. Robertson H. M. The mariner transposable element is widespread in insects. Nature. 1993 Mar 18;362(6417):241–245. doi: 10.1038/362241a0. [DOI] [PubMed] [Google Scholar]
  46. Robertson H. M., Zumpano K. L., Lohe A. R., Hartl D. L. Reconstructing the ancient mariners of humans. Nat Genet. 1996 Apr;12(4):360–361. doi: 10.1038/ng0496-360. [DOI] [PubMed] [Google Scholar]
  47. Rubin E. J., Akerley B. J., Novik V. N., Lampe D. J., Husson R. N., Mekalanos J. J. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1645–1650. doi: 10.1073/pnas.96.4.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  49. Sedensky M. M., Hudson S. J., Everson B., Morgan P. G. Identification of a mariner-like repetitive sequence in C. elegans. Nucleic Acids Res. 1994 May 11;22(9):1719–1723. doi: 10.1093/nar/22.9.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tosi L. R., Beverley S. M. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res. 2000 Feb 1;28(3):784–790. doi: 10.1093/nar/28.3.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wang W., Swevers L., Iatrou K. Mariner (Mos1) transposase and genomic integration of foreign gene sequences in Bombyx mori cells. Insect Mol Biol. 2000 Apr;9(2):145–155. doi: 10.1046/j.1365-2583.2000.00172.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES