Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):779–792. doi: 10.1093/genetics/160.2.779

Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations.

Rongling Wu 1, Chang-Xing Ma 1, George Casella 1
PMCID: PMC1461972  PMID: 11861578

Abstract

Linkage analysis and allelic association (also referred to as linkage disequilibrium) studies are two major approaches for mapping genes that control simple or complex traits in plants, animals, and humans. But these two approaches have limited utility when used alone, because they use only part of the information that is available for a mapping population. More recently, a new mapping strategy has been designed to integrate the advantages of linkage analysis and linkage disequilibrium analysis for genome mapping in outcrossing populations. The new strategy makes use of a random sample from a panmictic population and the open-pollinated progeny of the sample. In this article, we extend the new strategy to map quantitative trait loci (QTL), using molecular markers within the EM-implemented maximum-likelihood framework. The most significant advantage of this extension is that both linkage and linkage disequilibrium between a marker and QTL can be estimated simultaneously, thus increasing the efficiency and effectiveness of genome mapping for recalcitrant outcrossing species. Simulation studies are performed to test the statistical properties of the MLEs of genetic and genomic parameters including QTL allele frequency, QTL effects, QTL position, and the linkage disequilibrium of the QTL and a marker. The potential utility of our mapping strategy is discussed.

Full Text

The Full Text of this article is available as a PDF (142.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collins A., Morton N. E. Mapping a disease locus by allelic association. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1741–1745. doi: 10.1073/pnas.95.4.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Darvasi A., Weinreb A., Minke V., Weller J. I., Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 1993 Jul;134(3):943–951. doi: 10.1093/genetics/134.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dobbs DA, Vanhessche KP, Brazi E, Rautenstrauch V, V, Lenoir JY, Genêt JP, Wiles J, Bergens SH. Industrial Synthesis of (+)-cis-Methyl Dihydrojasmonate by Enantioselective Catalytic Hydrogenation; Identification of the Precatalyst. Angew Chem Int Ed Engl. 2000 Jun 2;39(11):1992–1995. doi: 10.1002/1521-3773(20000602)39:11<1992::aid-anie1992>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  4. Gordon D., Simonic I., Ott J. Significant evidence for linkage disequilibrium over a 5-cM region among Afrikaners. Genomics. 2000 May 15;66(1):87–92. doi: 10.1006/geno.2000.6190. [DOI] [PubMed] [Google Scholar]
  5. Hill W. G., Weir B. S. Maximum-likelihood estimation of gene location by linkage disequilibrium. Am J Hum Genet. 1994 Apr;54(4):705–714. [PMC free article] [PubMed] [Google Scholar]
  6. Hästbacka J., de la Chapelle A., Kaitila I., Sistonen P., Weaver A., Lander E. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat Genet. 1992 Nov;2(3):204–211. doi: 10.1038/ng1192-204. [DOI] [PubMed] [Google Scholar]
  7. Hästbacka J., de la Chapelle A., Mahtani M. M., Clines G., Reeve-Daly M. P., Daly M., Hamilton B. A., Kusumi K., Trivedi B., Weaver A. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell. 1994 Sep 23;78(6):1073–1087. doi: 10.1016/0092-8674(94)90281-x. [DOI] [PubMed] [Google Scholar]
  8. Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luo Z. W., Suhai S. Estimating linkage disequilibrium between a polymorphic marker locus and a trait locus in natural populations. Genetics. 1999 Jan;151(1):359–371. doi: 10.1093/genetics/151.1.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Luo Z. W., Tao S. H., Zeng Z. B. Inferring linkage disequilibrium between a polymorphic marker locus and a trait locus in natural populations. Genetics. 2000 Sep;156(1):457–467. doi: 10.1093/genetics/156.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McPeek M. S., Strahs A. Assessment of linkage disequilibrium by the decay of haplotype sharing, with application to fine-scale genetic mapping. Am J Hum Genet. 1999 Sep;65(3):858–875. doi: 10.1086/302537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meuwissen T. H., Goddard M. E. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics. 2000 May;155(1):421–430. doi: 10.1093/genetics/155.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morris A. P., Whittaker J. C., Balding D. J. Bayesian fine-scale mapping of disease loci, by hidden Markov models. Am J Hum Genet. 2000 Jun 1;67(1):155–169. doi: 10.1086/302956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Olson J. M., Witte J. S., Elston R. C. Genetic mapping of complex traits. Stat Med. 1999 Nov 15;18(21):2961–2981. doi: 10.1002/(sici)1097-0258(19991115)18:21<2961::aid-sim206>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  15. Pfeiffer A., Olivieri A. M., Morgante M. Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome. 1997 Aug;40(4):411–419. doi: 10.1139/g97-055. [DOI] [PubMed] [Google Scholar]
  16. Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
  17. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics. 1999 Apr;151(4):1605–1619. doi: 10.1093/genetics/151.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spielman R. S., Ewens W. J. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet. 1996 Nov;59(5):983–989. [PMC free article] [PubMed] [Google Scholar]
  19. Tanksley S. D. Mapping polygenes. Annu Rev Genet. 1993;27:205–233. doi: 10.1146/annurev.ge.27.120193.001225. [DOI] [PubMed] [Google Scholar]
  20. Terwilliger J. D. A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am J Hum Genet. 1995 Mar;56(3):777–787. [PMC free article] [PubMed] [Google Scholar]
  21. Terwilliger J. D., Weiss K. M. Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr Opin Biotechnol. 1998 Dec;9(6):578–594. doi: 10.1016/s0958-1669(98)80135-3. [DOI] [PubMed] [Google Scholar]
  22. Uimari P., Thaller G., Hoeschele I. The use of multiple markers in a Bayesian method for mapping quantitative trait loci. Genetics. 1996 Aug;143(4):1831–1842. doi: 10.1093/genetics/143.4.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang D. G., Fan J. B., Siao C. J., Berno A., Young P., Sapolsky R., Ghandour G., Perkins N., Winchester E., Spencer J. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998 May 15;280(5366):1077–1082. doi: 10.1126/science.280.5366.1077. [DOI] [PubMed] [Google Scholar]
  24. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
  25. Whittaker J. C., Denham M. C., Morris A. P. The problems of using the transmission/disequilibrium test to infer tight linkage. Am J Hum Genet. 2000 Jun 16;67(2):523–526. doi: 10.1086/303007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wu R., Zeng Z. B. Joint linkage and linkage disequilibrium mapping in natural populations. Genetics. 2001 Feb;157(2):899–909. doi: 10.1093/genetics/157.2.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Xiong M., Guo S. W. Fine-scale genetic mapping based on linkage disequilibrium: theory and applications. Am J Hum Genet. 1997 Jun;60(6):1513–1531. doi: 10.1086/515475. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES