Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):571–593. doi: 10.1093/genetics/160.2.571

Identification of circadian-clock-regulated enhancers and genes of Drosophila melanogaster by transposon mobilization and luciferase reporting of cyclical gene expression.

Thomas Stempfl 1, Marion Vogel 1, Gisela Szabo 1, Corinna Wülbeck 1, Jian Liu 1, Jeffrey C Hall 1, Ralf Stanewsky 1
PMCID: PMC1461973  PMID: 11861563

Abstract

A new way was developed to isolate rhythmically expressed genes in Drosophila by modifying the classic enhancer-trap method. We constructed a P element containing sequences that encode firefly luciferase as a reporter for oscillating gene expression in live flies. After generation of 1176 autosomal insertion lines, bioluminescence screening revealed rhythmic reporter-gene activity in 6% of these strains. Rhythmically fluctuating reporter levels were shown to be altered by clock mutations in genes that specify various circadian transcription factors or repressors. Intriguingly, rhythmic luminescence in certain lines was affected by only a subset of the pacemaker mutations. By isolating genes near 13 of the transposon insertions and determining their temporal mRNA expression pattern, we found that four of the loci adjacent to the trapped enhancers are rhythmically expressed. Therefore, this approach is suitable for identifying genetic loci regulated by the circadian clock. One transposon insert caused a mutation in the rhythmically expressed gene numb. This novel numb allele, as well as previously described ones, was shown to affect the fly's rhythm of locomotor activity. In addition to its known role in cell fate determination, this gene and the phosphotyrosine-binding protein it encodes are likely to function in the circadian system.

Full Text

The Full Text of this article is available as a PDF (512.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bae K., Lee C., Sidote D., Chuang K. Y., Edery I. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. Mol Cell Biol. 1998 Oct;18(10):6142–6151. doi: 10.1128/mcb.18.10.6142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belvin M. P., Zhou H., Yin J. C. The Drosophila dCREB2 gene affects the circadian clock. Neuron. 1999 Apr;22(4):777–787. doi: 10.1016/s0896-6273(00)80736-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  7. Blackman R. K. Streamlined protocol for polytene chromosome in situ hybridization. Biotechniques. 1996 Aug;21(2):226-228, 230. doi: 10.2144/96212bm12. [DOI] [PubMed] [Google Scholar]
  8. Blau J., Young M. W. Cycling vrille expression is required for a functional Drosophila clock. Cell. 1999 Dec 10;99(6):661–671. doi: 10.1016/s0092-8674(00)81554-8. [DOI] [PubMed] [Google Scholar]
  9. Brandes C., Plautz J. D., Stanewsky R., Jamison C. F., Straume M., Wood K. V., Kay S. A., Hall J. C. Novel features of drosophila period Transcription revealed by real-time luciferase reporting. Neuron. 1996 Apr;16(4):687–692. doi: 10.1016/s0896-6273(00)80088-4. [DOI] [PubMed] [Google Scholar]
  10. Chung Y. D., Zhu J., Han Y., Kernan M. J. nompA encodes a PNS-specific, ZP domain protein required to connect mechanosensory dendrites to sensory structures. Neuron. 2001 Feb;29(2):415–428. doi: 10.1016/s0896-6273(01)00215-x. [DOI] [PubMed] [Google Scholar]
  11. Claridge-Chang A., Wijnen H., Naef F., Boothroyd C., Rajewsky N., Young M. W. Circadian regulation of gene expression systems in the Drosophila head. Neuron. 2001 Nov 20;32(4):657–671. doi: 10.1016/s0896-6273(01)00515-3. [DOI] [PubMed] [Google Scholar]
  12. Crevel G., Huikeshoven H., Cotterill S. Df31 is a novel nuclear protein involved in chromatin structure in Drosophila melanogaster. J Cell Sci. 2001 Jan;114(Pt 1):37–47. doi: 10.1242/jcs.114.1.37. [DOI] [PubMed] [Google Scholar]
  13. Ding J. M., Faiman L. E., Hurst W. J., Kuriashkina L. R., Gillette M. U. Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J Neurosci. 1997 Jan 15;17(2):667–675. doi: 10.1523/JNEUROSCI.17-02-00667.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Egan E. S., Franklin T. M., Hilderbrand-Chae M. J., McNeil G. P., Roberts M. A., Schroeder A. J., Zhang X., Jackson F. R. An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants. J Neurosci. 1999 May 15;19(10):3665–3673. doi: 10.1523/JNEUROSCI.19-10-03665.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Emery P., So W. V., Kaneko M., Hall J. C., Rosbash M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell. 1998 Nov 25;95(5):669–679. doi: 10.1016/s0092-8674(00)81637-2. [DOI] [PubMed] [Google Scholar]
  16. Ewer J., Frisch B., Hamblen-Coyle M. J., Rosbash M., Hall J. C. Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells' influence on circadian behavioral rhythms. J Neurosci. 1992 Sep;12(9):3321–3349. doi: 10.1523/JNEUROSCI.12-09-03321.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ginty D. D., Kornhauser J. M., Thompson M. A., Bading H., Mayo K. E., Takahashi J. S., Greenberg M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science. 1993 Apr 9;260(5105):238–241. doi: 10.1126/science.8097062. [DOI] [PubMed] [Google Scholar]
  18. Glossop N. R., Lyons L. C., Hardin P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science. 1999 Oct 22;286(5440):766–768. doi: 10.1126/science.286.5440.766. [DOI] [PubMed] [Google Scholar]
  19. Hafen E. Kinases and phosphatases--a marriage is consummated. Science. 1998 May 22;280(5367):1212–1213. doi: 10.1126/science.280.5367.1212. [DOI] [PubMed] [Google Scholar]
  20. Hall J. C. Cryptochromes: sensory reception, transduction, and clock functions subserving circadian systems. Curr Opin Neurobiol. 2000 Aug;10(4):456–466. doi: 10.1016/s0959-4388(00)00117-3. [DOI] [PubMed] [Google Scholar]
  21. Hall J. C. Tripping along the trail to the molecular mechanisms of biological clocks. Trends Neurosci. 1995 May;18(5):230–240. doi: 10.1016/0166-2236(95)93908-g. [DOI] [PubMed] [Google Scholar]
  22. Hamblen M. J., White N. E., Emery P. T., Kaiser K., Hall J. C. Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. Genetics. 1998 May;149(1):165–178. doi: 10.1093/genetics/149.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hardin P. E. Analysis of period mRNA cycling in Drosophila head and body tissues indicates that body oscillators behave differently from head oscillators. Mol Cell Biol. 1994 Nov;14(11):7211–7218. doi: 10.1128/mcb.14.11.7211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990 Feb 8;343(6258):536–540. doi: 10.1038/343536a0. [DOI] [PubMed] [Google Scholar]
  25. Harmer S. L., Hogenesch J. B., Straume M., Chang H. S., Han B., Zhu T., Wang X., Kreps J. A., Kay S. A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 2000 Dec 15;290(5499):2110–2113. doi: 10.1126/science.290.5499.2110. [DOI] [PubMed] [Google Scholar]
  26. Jin X., Shearman L. P., Weaver D. R., Zylka M. J., de Vries G. J., Reppert S. M. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999 Jan 8;96(1):57–68. doi: 10.1016/s0092-8674(00)80959-9. [DOI] [PubMed] [Google Scholar]
  27. Johnson C. H., Golden S. S. Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol. 1999;53:389–409. doi: 10.1146/annurev.micro.53.1.389. [DOI] [PubMed] [Google Scholar]
  28. Kaneko M., Hall J. C. Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol. 2000 Jun 19;422(1):66–94. doi: 10.1002/(sici)1096-9861(20000619)422:1<66::aid-cne5>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  29. Kernan M., Cowan D., Zuker C. Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron. 1994 Jun;12(6):1195–1206. doi: 10.1016/0896-6273(94)90437-5. [DOI] [PubMed] [Google Scholar]
  30. Kloss B., Price J. L., Saez L., Blau J., Rothenfluh A., Wesley C. S., Young M. W. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell. 1998 Jul 10;94(1):97–107. doi: 10.1016/s0092-8674(00)81225-8. [DOI] [PubMed] [Google Scholar]
  31. Kloss B., Rothenfluh A., Young M. W., Saez L. Phosphorylation of period is influenced by cycling physical associations of double-time, period, and timeless in the Drosophila clock. Neuron. 2001 Jun;30(3):699–706. doi: 10.1016/s0896-6273(01)00320-8. [DOI] [PubMed] [Google Scholar]
  32. Konopka R. J., Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2112–2116. doi: 10.1073/pnas.68.9.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Konopka R. J., Hamblen-Coyle M. J., Jamison C. F., Hall J. C. An ultrashort clock mutation at the period locus of Drosophila melanogaster that reveals some new features of the fly's circadian system. J Biol Rhythms. 1994 Winter;9(3-4):189–216. doi: 10.1177/074873049400900303. [DOI] [PubMed] [Google Scholar]
  34. Krishnan B., Dryer S. E., Hardin P. E. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature. 1999 Jul 22;400(6742):375–378. doi: 10.1038/22566. [DOI] [PubMed] [Google Scholar]
  35. Krishnan B., Levine J. D., Lynch M. K., Dowse H. B., Funes P., Hall J. C., Hardin P. E., Dryer S. E. A new role for cryptochrome in a Drosophila circadian oscillator. Nature. 2001 May 17;411(6835):313–317. doi: 10.1038/35077094. [DOI] [PubMed] [Google Scholar]
  36. Liu Y., Tsinoremas N. F., Johnson C. H., Lebedeva N. V., Golden S. S., Ishiura M., Kondo T. Circadian orchestration of gene expression in cyanobacteria. Genes Dev. 1995 Jun 15;9(12):1469–1478. doi: 10.1101/gad.9.12.1469. [DOI] [PubMed] [Google Scholar]
  37. Loros J. J., Dunlap J. C. Genetic and molecular analysis of circadian rhythms in Neurospora. Annu Rev Physiol. 2001;63:757–794. doi: 10.1146/annurev.physiol.63.1.757. [DOI] [PubMed] [Google Scholar]
  38. Luehrsen K. R., de Wet J. R., Walbot V. Transient expression analysis in plants using firefly luciferase reporter gene. Methods Enzymol. 1992;216:397–414. doi: 10.1016/0076-6879(92)16037-k. [DOI] [PubMed] [Google Scholar]
  39. Lukacsovich T., Asztalos Z., Awano W., Baba K., Kondo S., Niwa S., Yamamoto D. Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics. 2001 Feb;157(2):727–742. doi: 10.1093/genetics/157.2.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Martinek S., Inonog S., Manoukian A. S., Young M. W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell. 2001 Jun 15;105(6):769–779. doi: 10.1016/s0092-8674(01)00383-x. [DOI] [PubMed] [Google Scholar]
  41. Mayer-Jaekel R. E., Ohkura H., Gomes R., Sunkel C. E., Baumgartner S., Hemmings B. A., Glover D. M. The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell. 1993 Feb 26;72(4):621–633. doi: 10.1016/0092-8674(93)90080-a. [DOI] [PubMed] [Google Scholar]
  42. McDonald M. J., Rosbash M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell. 2001 Nov 30;107(5):567–578. doi: 10.1016/s0092-8674(01)00545-1. [DOI] [PubMed] [Google Scholar]
  43. McNeil G. P., Zhang X., Genova G., Jackson F. R. A molecular rhythm mediating circadian clock output in Drosophila. Neuron. 1998 Feb;20(2):297–303. doi: 10.1016/s0896-6273(00)80457-2. [DOI] [PubMed] [Google Scholar]
  44. Myers M. P., Wager-Smith K., Wesley C. S., Young M. W., Sehgal A. Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science. 1995 Nov 3;270(5237):805–808. doi: 10.1126/science.270.5237.805. [DOI] [PubMed] [Google Scholar]
  45. Newby L. M., Jackson F. R. A new biological rhythm mutant of Drosophila melanogaster that identifies a gene with an essential embryonic function. Genetics. 1993 Dec;135(4):1077–1090. doi: 10.1093/genetics/135.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Newby L. M., Jackson F. R. Regulation of a specific circadian clock output pathway by lark, a putative RNA-binding protein with repressor activity. J Neurobiol. 1996 Sep;31(1):117–128. doi: 10.1002/(SICI)1097-4695(199609)31:1<117::AID-NEU10>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  47. Park J. H., Hall J. C. Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in Drosophila melanogaster. J Biol Rhythms. 1998 Jun;13(3):219–228. doi: 10.1177/074873098129000066. [DOI] [PubMed] [Google Scholar]
  48. Park J. H., Helfrich-Förster C., Lee G., Liu L., Rosbash M., Hall J. C. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3608–3613. doi: 10.1073/pnas.070036197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Plautz J. D., Straume M., Stanewsky R., Jamison C. F., Brandes C., Dowse H. B., Hall J. C., Kay S. A. Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythms. 1997 Jun;12(3):204–217. doi: 10.1177/074873049701200302. [DOI] [PubMed] [Google Scholar]
  50. Price J. L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M. W. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998 Jul 10;94(1):83–95. doi: 10.1016/s0092-8674(00)81224-6. [DOI] [PubMed] [Google Scholar]
  51. Renn S. C., Park J. H., Rosbash M., Hall J. C., Taghert P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell. 1999 Dec 23;99(7):791–802. doi: 10.1016/s0092-8674(00)81676-1. [DOI] [PubMed] [Google Scholar]
  52. Reppert S. M., Weaver D. R. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol. 2001;63:647–676. doi: 10.1146/annurev.physiol.63.1.647. [DOI] [PubMed] [Google Scholar]
  53. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rothenfluh A., Abodeely M., Price J. L., Young M. W. Isolation and analysis of six timeless alleles that cause short- or long-period circadian rhythms in Drosophila. Genetics. 2000 Oct;156(2):665–675. doi: 10.1093/genetics/156.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  56. Rutila J. E., Suri V., Le M., So W. V., Rosbash M., Hall J. C. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998 May 29;93(5):805–814. doi: 10.1016/s0092-8674(00)81441-5. [DOI] [PubMed] [Google Scholar]
  57. Santolini E., Puri C., Salcini A. E., Gagliani M. C., Pelicci P. G., Tacchetti C., Di Fiore P. P. Numb is an endocytic protein. J Cell Biol. 2000 Dec 11;151(6):1345–1352. doi: 10.1083/jcb.151.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sarov-Blat L., So W. V., Liu L., Rosbash M. The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell. 2000 Jun 9;101(6):647–656. doi: 10.1016/s0092-8674(00)80876-4. [DOI] [PubMed] [Google Scholar]
  59. Schaffer R., Landgraf J., Accerbi M., Simon V., Larson M., Wisman E. Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell. 2001 Jan;13(1):113–123. doi: 10.1105/tpc.13.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Schmid K. J., Tautz D. A screen for fast evolving genes from Drosophila. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9746–9750. doi: 10.1073/pnas.94.18.9746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Sehgal A., Price J. L., Man B., Young M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science. 1994 Mar 18;263(5153):1603–1606. doi: 10.1126/science.8128246. [DOI] [PubMed] [Google Scholar]
  62. Shiomi K., Takeichi M., Nishida Y., Nishi Y., Uemura T. Alternative cell fate choice induced by low-level expression of a regulator of protein phosphatase 2A in the Drosophila peripheral nervous system. Development. 1994 Jun;120(6):1591–1599. doi: 10.1242/dev.120.6.1591. [DOI] [PubMed] [Google Scholar]
  63. So W. V., Rosbash M. Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. EMBO J. 1997 Dec 1;16(23):7146–7155. doi: 10.1093/emboj/16.23.7146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. So W. V., Sarov-Blat L., Kotarski C. K., McDonald M. J., Allada R., Rosbash M. takeout, a novel Drosophila gene under circadian clock transcriptional regulation. Mol Cell Biol. 2000 Sep;20(18):6935–6944. doi: 10.1128/mcb.20.18.6935-6944.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Stanewsky R., Jamison C. F., Plautz J. D., Kay S. A., Hall J. C. Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J. 1997 Aug 15;16(16):5006–5018. doi: 10.1093/emboj/16.16.5006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., Rosbash M., Hall J. C. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 1998 Nov 25;95(5):681–692. doi: 10.1016/s0092-8674(00)81638-4. [DOI] [PubMed] [Google Scholar]
  67. Suri V., Hall J. C., Rosbash M. Two novel doubletime mutants alter circadian properties and eliminate the delay between RNA and protein in Drosophila. J Neurosci. 2000 Oct 15;20(20):7547–7555. doi: 10.1523/JNEUROSCI.20-20-07547.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Uemura T., Shepherd S., Ackerman L., Jan L. Y., Jan Y. N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell. 1989 Jul 28;58(2):349–360. doi: 10.1016/0092-8674(89)90849-0. [DOI] [PubMed] [Google Scholar]
  69. Uemura T., Shiomi K., Togashi S., Takeichi M. Mutation of twins encoding a regulator of protein phosphatase 2A leads to pattern duplication in Drosophila imaginal discs. Genes Dev. 1993 Mar;7(3):429–440. doi: 10.1101/gad.7.3.429. [DOI] [PubMed] [Google Scholar]
  70. Van Gelder R. N., Bae H., Palazzolo M. J., Krasnow M. A. Extent and character of circadian gene expression in Drosophila melanogaster: identification of twenty oscillating mRNAs in the fly head. Curr Biol. 1995 Dec 1;5(12):1424–1436. doi: 10.1016/s0960-9822(95)00280-6. [DOI] [PubMed] [Google Scholar]
  71. Van Gelder R. N., Krasnow M. A. A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression. EMBO J. 1996 Apr 1;15(7):1625–1631. [PMC free article] [PubMed] [Google Scholar]
  72. Wang S., Younger-Shepherd S., Jan L. Y., Jan Y. N. Only a subset of the binary cell fate decisions mediated by Numb/Notch signaling in Drosophila sensory organ lineage requires Suppressor of Hairless. Development. 1997 Nov;124(22):4435–4446. doi: 10.1242/dev.124.22.4435. [DOI] [PubMed] [Google Scholar]
  73. Wuarin J., Falvey E., Lavery D., Talbot D., Schmidt E., Ossipow V., Fonjallaz P., Schibler U. The role of the transcriptional activator protein DBP in circadian liver gene expression. J Cell Sci Suppl. 1992;16:123–127. doi: 10.1242/jcs.1992.supplement_16.15. [DOI] [PubMed] [Google Scholar]
  74. Zwahlen C., Li S. C., Kay L. E., Pawson T., Forman-Kay J. D. Multiple modes of peptide recognition by the PTB domain of the cell fate determinant Numb. EMBO J. 2000 Apr 3;19(7):1505–1515. doi: 10.1093/emboj/19.7.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES